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1 Introduction 

The aim of this work is the development of a high-resolution 

and high-efficiency module applicable to various numerical 

simulations. Despite the increasing computational power, lack 

of numerical resolution is a persistent problem in a simulation 

studies.  

To solve this problem, we adopted adaptive mesh refinement 

(AMR) which realizes both high-resolution and high-efficiency 

in a simulation [1,2]. AMR technique can provide efficient 

numerical calculation by adapting grids to regions where higher 

numerical resolution is required. However, it is difficult to 

implement the AMR technique in a conventional simulation 

code. The development of a portable AMR framework will 

contribute to the high performance of various numerical 

simulations. 

 

2 Design of AMR module 

We adopted block-structured AMR [2,4], in consideration of 

portability. The module has two point for portability. 

2.1 AMR-type 

The module is based on self-similar block-structured AMR, 

with fully threaded tree data structure (FTT) allowing recursive 

grid refinements on a block-by-block basis[5]. In each block, 

uniform grid code is applicable because of block-structure, and  

it is possible to calculate with same size grid system for each 

refinement levels because of self-similar structure. (Fig.1) 

 

 
Fig.1 Self-similar block-structure AMR 

 

Each block has information about level of refined hierarchy 

and physical variable. Every block has three kinds of pointers 

which imply neighbor, child, and parent blocks. Relationship of 

each block is built by pointers. Each block is treated as 

independent unit organized in refinement tree. 

2.2 Proccessing flow 

 The module is designed to isolate calculation in a block from 

AMR process. Because of the isolation, application of a uniform 

grid code needs to change only the calculation in each block. 

(Fig.2) 

 

 
Fig.2 Processing flow of one step calculation 

 

Due to the isolation, processing flow contains the overhead. 

Calculating the internal arrays of each block, the module needs 

the three processes. First, in each block, the contents of the 

internal arrays are copied to temporary arrays for smooth 

calculation. Second, by calling the uniform grid code which is 

introduced to the module, physical values in temporary arrays 

are calculated. Finally, the updated values in the temporary 

arrays are copied to the internal arrays of the original code. At 

the cost of partial efficiency, the module pursues the portable 

framework. 

 

3 Example of AMR module incorporation 

  To demonstrate the effectiveness of the module, we applied 

the module to simple 1D/2D advection equation. 

3.1 High-resolution by AMR module 

In this test case, the module creates one subdivision block. 

With the introduction of this module, advection equation should 

be calculated with double accuracy. High-resolution advection 

calculation is confirmed by comparison between cases of AMR 

and uniformed grid (Fig.3). Figure 3 shows calculation results of 

1D upwind-difference-scheme(UDS) calculated by the AMR 

module and uniform grid code. The vertical axis shows the 

physical quantity, and the horizontal axis shows the position in 

fig.3. This graph indicates that regions where physical quantities 

has large gradient are refined by AMR technique. It was shown 

that using the AMR module can provide high resolution 

calculation.  

3.2 High-efficiency by AMR module 

Measurement of computing time shows that the application is 

high-efficiency module compared to uniform grid codes (Fig.4). 

Figure 4 shows the comparison of computing time for 2D UDS 

calculated by the AMR module and uniformed grid code. The 

vertical axis shows the conputing time, and the horizontal axis 

shows the size of simulation field in fig.4. In all cases , the 



 

 

initial condition is common and only the size of simulation field 

is different. Physical quantities were calcurated with the same 

accuracy. The increase rates of computing time suggest that 

calculation of 2D UDS using the AMR module is faster than 

calculation by uniform grid code. When the simulation region 

become large, the result by the module is become efficient. 

 

  
Fig.3 Comparison of 1D AMR and 1D uniform grid code 

 

 

Fig.4 Computing time for 2D UDS 

 

Comparison of memory usage has a same tendency of 

comparison of calculating time; calculation by the module needs 

lower memory usage than calculation by uniform grid code 

when the simulation region is large. The module makes for 

efficiency of calculation. In the case of small simulation region, 

however, computing time and memory usage using the module 

are about the same as these using uniform grid codes. 

 In order to calculate efficiently even if the calculation region 

is small, it is necessary to reduce the overhead of blocking. We 

should explore more efficient method of blocking without 

sacrificing the portability. 

 

4 Conclusion 

The AMR module developed in this work is effective to 

improve the accuracy , and allows for the efficient computation 

to some extent. Considering the overhead of the module, more 

efficient blocking method depending on introduced calculation 

is required. Even when simulation size is small, we should make 

the module calculate more efficient. 

In terms of portability, we have introduced only a few 

calculation examples, so it is necessary to try to introduce the 

various calculations. For the future, the module will be used in 

several simulation code, MHD code, Gyrokinetic Vlasov code, 

and Particle code. Evaluation of portability will be appreciated 

soon after. 

The module has function of only one step subdivision and 

does not adapted to parallelization. In order to apply to large-

scale calculations, we consider that the contents of the following 

development are parallelization, n-step subdivision and more 

efficiency blocking technique.  
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