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1 Introduction

A mesh generation procedure must be needed before

using general finite element method (FEM) for solution of

the partial differential equations. However, it costs a lot

of time to divide the region into a set of finite elements.

Thus, the time required for discretizing the partial differen-

tial equation or solving the resulting linear system is much

shorter than that for the element generation. On the other

hand, meshless approaches do not require finite elements of

a geometrical structure. The necessary information is only

locations of nodes which are scattered in the region and

on the boundary. For these reasons, various meshless ap-

proaches have been developed, such as the diffuse element

method, the Element-Free Galerkin (EFG) method [1] and

the Meshless Local Petrov-Galerkin (MLPG) method [2].

The purpose of the present study is to implement the

variable preconditioned Minimal Residual method with

generalized Jacobi and to solve the linear system obtained

by EFG with two types of imposing method for the bound-

ary condition.

2 Element-Free Galerkin Method

In this section, we derive the weak form of the Poisson

problem in the analytic two-dimensional region Ω and dis-

cretize it by means of the Element-Free Galerkin (EFG)

method. For the simplicity, we assume that the region

Ω is bounded by essential boundary ΓD. The governing

equation is expressed as

−∆u = f, (1)

where u(x, y) denotes unknown function and f(x, y) de-

notes the given functions. Furthermore, the boundary con-

ditions on ΓD is assumed as u = ū. Here, ū denotes the

given function.

EFG is based on the global Galerkin formulation, and

the boundary conditions are satisfied by the Lagrange mul-

tiplier. That is to say, the governing equation and bound-

ary conditions can be proved equivalent to the following

weak form:
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δλ(u − ū) d` = 0. (2)

The function δu and δλ are arbitrary functions and we

call these functions test functions. Besides, u is the trial

function and λ denotes the Lagrange multiplier. Here,

when the trial and test functions are taken from the same

functional space such as u, δu ∈ span(φ1, φ2, · · · , φM ),

λ, δλ ∈ span(N1, N2, · · · , Nn), the weak form is discretized

as
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where φj denotes the shape function of EFG for j-th node

and Nj denotes the shape function for j-th boundary node.

In the present study, the delta function and the first order

B-spline is adopted for the functions Nj . Furthermore, the

matrices A, B and vectors f , g are defined as follows.

(W )ij =

Z

Ω

∇φi · ∇φj dΩ, (B)ij =

Z

Γ

φi Nj d`,

(f)i =

Z

Ω

φip dΩ, (g)j =

Z

Γ

Nj ū d`.

Here ( )ij represents the (i, j)-th matrix element and ( )i

represents the i-th vector component.

We can see from (3), the left lower block matrix of the

coefficient matrix becomes zero matrix. From this reasons,

the stationary iterative method, such as Jacobi method

and SOR method can not be applied for the solver.

3 Variable Preconditioned Krylov Subspace

Method

It is well known that a preconditioning strategy can im-

prove the performance for solving a linear system Ax = b

using the Krylov subspace method and various precon-

ditioning strategies have been developed and numerically

investigated. Here, A, x and b denote a coefficient ma-

trix, an unknown vector, and a known vector, respectively.

Generally, a preconditioned matrix M is determined by

incomplete LU decomposition, and a vector M−1rk is cal-

culated at k-th iteration by using backward substitution

or incomplete Cholesky factorization. Here, rk denotes

residual vector at k-th iteration. The calculation time of

solving linear system is relatively large for the precondi-

tioned part.

K. Abe et al. developed new preconditioning strategy

which is called the variable preconditioning method [3].

Variable Preconditioned (VP) GCR has two nested itera-

tions for GCR and variable preconditioning for GCR are

called as outer-loop and inner-loop, respectively. In the

preconditioned procedure, the residual equation is solved

to determine the preconditioner for the outer-loop. The al-

gorithm of VPGCR can be extended for symmetric matrix

solver by using other Krylov subspace method. The algo-

rithm of variable preconditioned Minimal Residual (VP-



Let x0 be an initial guess.
c1 = −1, c0 = 1, s1 = 0, s0 = 0
q0 = 0, v0 = 0,v−1 = 0
r0 = b− Ax0

Roughly solve Az0 = r0

β0 =
√

(r0, z0), η1 = β0

q1 = r0/β0, z1 = z0/β0

for k = 1, 2, · · · , until |ηk+1|/β0 ≤ ε do
rk = Azk − βk−1qk−1

αk = (rk, zk)
rk+1 = rk − αkqk

Roughly solve Azk+1 = rk+1

βk =
√

(rk+1, zk+1)
γ̂k = −ckαk − ck−1skβk−1

γk =
√

γ̂2 + β2
k

δk = skαk − ckck−1βk−1

εk = sk−1βk−1, ck+1 = γ̂k/γk, sk+1 = βk/γk

vk+1 = (zk − εkvk−1 − δkvk)/γk

xk+1 = xk + ck+1ηkvk+1

qk+1 = rk+1/βk, zk+1 = zk+1/βk

ηk+1 = sk+1ηk

end for

Fig. 1. The algorithm of variable preconditioned Minimal
Residual (VPMinRes) method.

MinRes) is shown in Fig. 1.

In the inner-loop procedure of VP Krylov subspace

method, the residual equation can be solved roughly by

using some iterative method with only a few iteration, and

a stationary iterative method such as Jacobi method and

SOR method is adopted for the solver. As we mentioned

above, however, the stationary iterative method can not

be applied for the linear system (3). From this reason, the

Generalized Jacobi method is adopted for the solver for

inner-loop [4].

To adopt Generalized Jacobi method for the inner-loop

solver, we transform the coefficient matrix A of the linear

system (3) as

A = D + L + U = (D + T ) + L + (U − T ), (4)

where D, L and U denote a diagonal, lower and upper

matrix of A. In addition, the elements of the diagonal

matrix T = diag(t1, t2, . . . , tn) are selected as follows.

ti = sgn(aii) × max
j

|aij | (5)

ti = sgn(aii) × 1.0 (6)

ti = sgn(aii) ×
X

i6=j

|aij | (7)

Here, aij denotes a (i, j)-th matrix element of the coeffi-

cient matrix A.

4 Numerical Results and Conclusion

As we mentioned above, two types of imposing method

for boundary condition are adopted. One is the delta func-

tion and the other is first order B-spline for the shape func-

tions Nj . Moreover, VPMinRes with generalized Jacobi is

adopted for the solver of the linear system (3), and the

residual histories of the system are shown in Fig. 2 and

Fig. 3.

Fig. 2. The residual history of VPMinRes. The bound-
ary conditions are implemented by using the first order
B-spline. A: case with (5), B: case with (6), C: case with
(7)

Fig. 3. The residual history of VPMinRes. The boundary
conditions are implemented by using the Delta function.
A: case with (5), B: case with (6), C: case with (7)

We can see from these figure that if the first order B-

spline function is adopted for imposing method, it takes

much iteration to solve the system than that of Delta func-

tion. This result is derived from the condition number of

the coefficient matrix. Actually, the condition number of

the coefficient matrix A with first order B-spline and the

Delta function are 1.9684 × 1016 and 352.10. The suppos-

able cause is an accuracy of numerical integration of the

B-spline.
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