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1 Introduction

Braess’s paradox is a situation that might occur when
new paths are added to a network. One might think
that adding additional paths would improve transporta-
tion time; however, Braess’s paradox shows that the trans-
portation speed can be degraded by adding certain paths
because the drivers follow a game theoretic strategy with-
out coordinating between each other.

A brief introduction regarding how network traffic is af-
fected by game theoretic decisions and the occurrence of
Braess’s paradox can be found in reference [1]. A proof
of Braess’s Paradox is shown in reference [2], while several
guidelines on how to avoid Braess’s Paradox is presented
in reference [3]. Braess’s ratio with respect to the maxi-
mum experienced latency of a flow particle is introduced in
reference [4]. They discuss how Braess’s paradox instance
can be found if the Braess’s ratio is strictly greater than
one.

In this paper we propose a method to find the edge
causing Braess’s paradox, if any, in order to eliminate it.
The proposed method is simulated and the results of the
simulation are provided. The proposed technique can be
applied to larger networks in order to improve the trans-
portation time by eliminating the edges causing Braess’s
Paradox.

2 Eliminating Braess’s Paradox

In this section, we present our proposed method to op-
timize a traffic pattern. The steps are as follows:

1. First, check whether Braess’s paradox is occurring.

2. If it is occurring, create new networks by deleting one
of the edges used in the traffic path.

3. Find the Nash equilibriums and the average travel
time of each network.

4. Compare the time cost of each of the created networks
with the time of the original network, and adopt the
least expensive one.

For example, consider the routes shown in Fig. 1 and
suppose that 4000 cars want to get from city 1 to city 4.
Each edge is labeled by the time cost it incurs the travelers.
The edge between vertices 2 and 3 has zero cost. The Nash
equilibrium of this network is established when all the cars
use the route through 2 and 3 (the path 1 → 2 → 3 → 4)
resulting in a travel time of 80 minutes [1].

We seek to study the result of eliminating the different
edges used in the used traffic path; hence we eliminate
1→ 2, 2→ 3 and 3→ 4, one edge at a time. We have the
following scenarios:

• When the city government eliminates edge 1–2 the
traffic pattern in the case of Nash equilibrium of the
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Fig. 1. A network suffering from Braess’s paradox

new the network is when the cars use the lower route
through 3, then the total travel time of each driver
becomes 85 minutes, since 4000/100 + 45 = 85.

• When the city government eliminates edge 2–3 the
traffic pattern in the case of Nash equilibrium is when
all the drivers balance themselves evenly between the
two routes, then the total travel time of each driver
becomes 65 minutes, since 2000/100 + 45 = 65.

• When the city government eliminates edge 3–4 the
traffic pattern in the case of Nash equilibrium is when
all the cars use the upper route through 2, then the
total travel time for everyone is 85 minutes, since
4000/100 + 45 = 85.

Next, we compare the time cost of the new cases with
the time of the original network to find the one with the
minimum time. In this case we adopt the traffic pattern
with edge 2–3 eliminated as it allows the least cost.

Since the occurrence of Braess’s paradox is caused by
adding new routes to a network and consequently allow-
ing new strategies, we can avoid it by using the proposed
method. This is achievable because the edge that causes
Braess’s paradox is always used in the traffic route.

In this example, we use directed graph, but in the sim-
ulation, we use undirected graph as shown in Fig. 2. The
main difference between directed and undirected graphs is
that the driver can move from 3 to 2.

3 Simulation

In this simulation, we take the model shown in Fig. 2.
In this model, the edges 1–3 and 2–4 are insensitive to
congestion as they have a fixed cost. However, the edges
1–2 and 3–4 are sensitive to congestion, as they have a
variable cost directly proportional to the number of cars.
When Braess’s paradox occurs, we compare the percentage
of reduction of delay with each change in the network.
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Fig. 2. The used simulation model
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Fig. 3. Ratio of delay before applying our proposed
method

It is important to note that the edges with a fixed cost
are independent of the number of passing cars; therefore,
the cost of using them is constant regardless of the number
of cars. Cars using edges with a variable cost —x/100 in
this case— will suffer a delay proportional to the number
of the cars using the same edge.

The simulator is written in C++ and it follows the as-
sumptions below:

• The model uses undirected graphs.

• Each driver will choose a strategy to minimize his
cost.

• Each car has information regarding the route chosen
by other cars.

4 Results

Fig. 3 shows the simulation results before applying our
proposed method. The vertical axis indicates the ratio of
delay while the horizontal axis indicates the number cars.
In particular, when the value indicated on the vertical axis
surpasses 1, this means that Braess’s paradox is occurring.

Fig. 4 shows the simulation results after applying our
proposed method. As a result, the value indicated by the
vertical does not go above 1. In other words, Braess’s
paradox has been avoided.

Fig. 5 shows the reduction in the average travel time
after applying the proposed method. The vertical axis is
a value obtained by travel time when Braess’s paradox is
avoided divided by the travel time when the paradox is
occurring. The horizontal axis indicates the number of
cars. It is clear that average travel time is reduced by a
maximum of 25%.
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Fig. 4. Ratio of delay after applying our proposed method
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Fig. 5. Rate of decrease in the incurred delay

5 Conclusion

In this paper, we propose a method to avoid Braess’s
paradox and prove its efficiency through simulation. This
method can be used to find the road that should be closed
in order to avoid congestion in the network.
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