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1 Introduction 

An analysis of seismic waveform data on Earth surface plays an 
important role in geophysical research because seismic waves 

excited by earthquake source propagates various regions inside 
the Earth and provide us information on physical state of the 
Earth. In order to visualize such wave data on global area in 
computer graphics, we have developed a tool for creating a 
polygon from the scalar/vector data mapped on an unstructured 
grid in two dimensions. In general, the data on the sphere 
surface is visualized, for example, by the color contour mapped 
on the sphere geometry. Our method utilizes the deformation of 

the polygon coordinate from sphere geometry for representing 
the wave form. Such a visualization method of wave form is not 
implemented on commonly used application such as GMT 
(Generic Mapping Tools). In this paper, we present some details 
of our employed method to convert the unstructured data to 
polygon data, and demonstrate visualization result of global 
seismic wave simulation. 

2 Method 

We consider the scattered data set pa  ( 3,2,1p ) defined at 

spherical coordinate ),,( ppr   on spherical surface (i.e. 

r constant). In our tool, this unstructured dataset is 
interpolated to the data on structured mesh with a grid size of 

 nn  . The 2-D uniform mesh defined by (   )1(ii
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We first calculate a weight factor ),( jiwp  of thp   scattered 

point to the node point at ),( ji  by 
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In Eq. (1), the weights of thp   scattered point ),( jiwp  are 

distributed to four corners of the cell that includes the point, by 
the simple first order accuracy scheme (Fig.1 (a)). The node 
value is obtained as 

ji

cellsp

ppji Sjiwaa ,
0

, /),(


  with 



cellsp

pji jiwS ),(,
0 ,   (2) 

where cells are four surrounding cells of the node point ),( ji . 

For the node points which have no entry of scattered data (i.e. 

0,
0 jiS ), the procedure of (2) is skipped. Instead, empty node 

data are iteratively ( ...2,1,0n ) filled with the averaging of 

surround nodes by 
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where ),1(),( jiJI  , ),1( ji  , )1,( ji  and )1,( ji , and 

)(  is a function defined by  
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The averaging procedures of (3) are iteratively applied to the 

empty node points until filling all of node data with 0, ji
nS .  

After the mapping process described above, we reduce the mesh 

size in   direction on a polar region, in order to avoid the 

concentration of the structured grid around the pole. The 
reduced coarse mesh points are defined by  

)(, ijji   and )1)(/(2)(   ini  ,                 (6) 

where )(2/)( iNnin    and  )sin(logint)( 2 iiN   for 

( ni 1 ) and )2()1( NN   and )1()(   nNnN  (Fig 2). 

The fine grid data are remapped to the coarse one with a linear 
interpolation. This coarsening scheme leads to 22.0-25.0% of 
grid size reduction. 
 
Then it is straight forward to create the polygons of sphere 
shape by dividing the structured grid cells to triangles. In our 
method, only two types of polygon geometry are taken into 
account: a division of simple square profile (Fig 1 (b)) and an 

interface block between fine and coarse grid (Fig 1 (c)).  
Finally, the polygon’s coordinate on sphere are deformed to 
represent the scalar/vector data on each node. The scalar 
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 or vector ))(,)(,)(( 3,2,1,, jijijiji aaaa 


value on 

each node is expressed by the displacement of the position from 

sphere by ))( ,)( ,)(( 3,,2,1, jijijiiji aaar   .  
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Fig. 1 (a) Structured grid mesh and scattered data; (b) Division 
of normal cell; (c) Division at interface cell 
 

 
Fig. 2 Example of the reduced grid cell for ),(  nn = )32,16(  

 

3 Result 

Here, we demonstrate visualization result by our developed tool 
for the simulated global seismic wave propagation. This 
simulation is performed by using the Spectral-Element Method 

[Komatitsch and Villote, 1998; Komatitsch et al., 2003] for the 
earthquake, which occurred in Tonga region on Septemebr 10, 
1992. The seismic waveform excited by this earthquake is 
analysed in Butler and Tsuboi (2010). The output data of this 
simulation is given by unstructured grid mesh. The polygon data 
given by our tool are visualized by the lay tracing software Pov-
ray [1]. The picture of Fig3 shows a snap shot of visualization 
result. The wave form given by the scalar value on the earth 

surface is captured from two different points of view. The 
animation movie of this simulation result is also presented at [2]. 
From these result, our simple but powerful polygon making tool 
is found to successfully visualize the wave form on the sphere in 
the three dimensional representation. 

Fig. 3 snapshot of the simulated seismic wave 
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