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1 Introduction:
Solar Dynamo and Simulation Strategy

The sun has a multi-layered structure, consisting of the
inner core, the radiative zone, and the convective zone
from the center to the surface. Since it is mostly composed
of hydrogen and helium gases at the state of plasma, the
electric conductivity is high enough to sustain electric cur-
rents. The magnetic field is then expected to be generated
due to the convective motion of the plasma in the solar
interior. We call this process as “solar dynamo” process.

It is well known that the dynamo process also works
in the liquid metal which makes up the outer core of the
earth. While the earth has quasi-steady, well-organized,
dipole magnetic fields, solar magnetic fields show time-
varying features due to cyclic sunspot (active region) for-
mations. Though 11-year activity cycle of the sun is be-
lieved as a consequence of solar dynamo process, its precise
mechanism remains poorly understood in spite of theoret-
ical and observational works for many years.

The compressible MHD equation governs the motion of
the plasma in the sun. Since it consists of eight non-linear
partial differential equations, it is impossible for us to ob-
tain exact solutions analytically without simplifications.
We thus often attack the complex solar dynamo problem
by means of computer simulations.

When discretizing the MHD equation, numerical time
step is limited by the CFL condition, that is ∆t < ∆x/Cs,
where Cs is the sound speed, ∆t is the numerical time step,
and ∆x is the grid spacing. This is a necessary condition
for the stability of explicit finite-difference methods, and
states that the numerical domain of dependence must con-
tain the analytical domain of dependence.

Since the gap between the sound and fluid velocities
in the sun is very large (i.e., Mach number is O(10−4)),
the numerical time step ∆t is enormously smaller than the
typical time scale of the fluid motion [1]. It is thus difficult
to carry out the solar dynamo simulation with a practical
time step when solving the compressible MHD equation.

To settle this issue associated with the CFL condition,
we take a research strategy in which we remove acoustic
waves by applying “Low-Mach number approximation” to
the MHD equation [2]. The approximated MHD equation
is summarized as follows:
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The symbols have their usual meanings, and π is the sec-
ond order term in the low Mach number expansion of the

pressure, that is,

p(x, t) = p0(t) + Mp1(t) + M2π(x, t) .

Since the higher order terms of the Mach number M are
neglected, the numerical time step is limited by the fluid
velocity in this approximation. Though this enables us
to carry out the dynamo simulation with a practical time-
step associated with fluid motions, there exists a numerical
disadvantage. Namely, we should solve a Poisson equation
for maintaining the divergence free of velocity fields.

The implementation of a fast Poisson equation solver
to the simulation code is a key for the efficient dynamo
simulation with low Mach number approximation. In this
paper, we report the development of a fast Poisson equa-
tion solver with Multigrid method, and its application to
“Yin-Yang grid”, which is a type of chimera grid for spher-
ical geometry and has been adopted in our solar dynamo
simulation code [4].

2 Multigrid Method and Yin-Yang Grid

The Multigrid method provides algorithms which can
be used to accelerate the convergence of basic iterative
methods, such as Jacobi , Gauss-Seidel, and SOR meth-
ods., by global correction from time to time, accomplished
by solving the target equation on coarse grid [3]. The key
idea behind multigrid method is to reduce efficiently long
wavelength components of residuals with calculations on
coarser grids. We adopt this method in the fast Poisson
equation solver which will be implemented into our solar
dynamo simulation code.

Yin-Yang grid is a kind of overset (Chimera) grid ap-
plied to a spherical shell, as shown in Fig.1 [4]. It is rec-
ognized that the popular latitude-longitude spherical grid
has the “pole problems” that refer to two different kinds
of difficulty in numerical calculations; one is the coordi-
nate singularity on the poles, and the other is the grid
convergence near the poles. It is a great advantage of the
Yin-Yang grid that it has neither a coordinate singularity,
nor grid convergence. Since the Yin-Yang grid has been
adopted in our dynamo simulation code, we developed the
fast Poisson equation solver for the Yin-Yang grid in an-
ticipation of its implementation into the dynamo code.

Fig. 1. Yin-Yang Grid which is adopted in our dynamo
simulation code [4].



3 Test Problem for Multigrid Poisson Solver

We choose, as the test problem for our Multigrid Poisson
solver, the boundary value problem for the magnetic field
in the vacuum outside the sphere of r ≥ 1. When assuming
the vacuum as an insulator, the magnetic field should be
written by the gradient of a potential field in r ≥ 1, that
is B = −∇ψ. From the Maxwell equations, we can derive
a Laplace equation for the potential field:

∇2ψ = 0, (r > 1) .

When applying the coordinate transformation of ζ; ζ =
1/r, the equation can be rewritten, in 0 ≤ ζ ≤ 1, by
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The potential problem is now converted into the boundary
value problem defined inside a unit sphere of 0 ≤ ζ ≤ 1.

We apply our Multigrid Poisson solver to this problem.
The boundary condition of the potential field is given by
the radial component of the magnetic filed on the bound-
ary r = ζ = 1 which is given by the analytic formula
for the dipole, quadrupole and octapole magnetic field,
and sample observational data for the earth and planetary
magnetic fields. In our Multigrid poisson solver, the Jacobi
method is used as the smoother. The V-cycle is repeated
for a couple of times until we get the convergence.

[Convergence Performance]
With applying our Multigrid Poisson solver on the Yin-

Yang grid, we obtained the numerical solutions of dipole,
quadrupole and octapole magnetic fields as simplest exam-
ple models. We confirmed that numerical solutions could
reproduce the analytic ones, and our Multigrid Poisson
solver delivered required performance. Fig.2 demonstrates
the convergence times to obtain each numerical solution
for the comparison among the numerical schemes adopt-
ing Jacobi method with and without multigrid accelera-
tion. This verifies that the convergence performance is
improved by Multigrid acceleration: It yields 6–29 times
shorter convergence time.

We finally applied our Multigrid Poisson solver to the
boundary value problem for the potential fields of the
earth. The boundary condition on the earth surface is
given by observational data [5]. The magnetic field line we
obtained for the earth is visualized in Fig.3.

Fig. 2. Convergence performance for different models.

Fig. 3. Visualization of magnetic potential for the Earth

4 Conclusion

The origin of magnetic fields is a longstanding issue in
the solar physics and has been explored mainly by numer-
ical simulations. The solar dynamo simulation is, how-
ever, suffering from the limitation on the numerical time
step due to the CFL condition: Since the gap between the
sound and fluid velocities in the sun is very large, the nu-
merical time step is enormously smaller than the typical
time scale of the fluid motion.

We thus take a research strategy in which we remove
acoustic waves by applying “Low Mach number approxi-
mation” to the MHD equation, which enables us to carry
out the dynamo simulation with a practical time step as-
sociated with fluid motions.

In this paper, we developed the Multigrid Poisson equa-
tion solver, and applied it to “Yin-Yang Grid”[4]. This is
because it is a key element for efficient dynamo simulation
with low Mach number approximation.

Our Multigrid Poisson solver was applied to the bound-
ary value problem for the various type of magnetic fields
in the vacuum outside the unit sphere. Then we obtained
the numerical solutions of dipole, quadrupole, octpole, and
planetary magnetic fields. It was confirmed from the test
problems that our Multigrid Poisson solver delivered the
required performance and yielded the 6–29 times shorter
convergence time. The implementation of Multigrid Pois-
son solver into our dynamo simulation code is beyond the
scope of this paper, but is our future work.
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