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1 Introduction
Numerical simulations of Fluid-Structure Interaction

(FSI) problems have been expected to afford much in-
sight into biological and biomedical systems along with
recent advances in high-performance computing. Unlike
conventionally-used Lagrangian methods with a mesh gen-
eration/reconstruction procedure, the authors have devel-
oped an Eulerian method using fixed regular grids [1]–
[6]. It facilitates simulations of systems involving a large
number of dispersed bodies, and avoids a breakdown in a
large deformation owing to the absence of the mesh dis-
tortion problem. In view of computational efficiency, the
monolithic formulation readily gets great performance out
of SIMD processing and makes a workload on each com-
pute core equivalent. It allows us to utilize efficient algo-
rithms cultivated for incompressible fluid flow problems.
Nevertheless, an iterative procedure for solving the pres-
sure Poisson equation makes it difficult to exploit the sys-
tem performance on a recent scalar supercomputer because
the performance of the solver is limited by the memory
bandwidth and repetitive communications rather than the
floating-point operation speed. Following a revived Artifi-
cial Compressibility Method (ACM) [7], the authors have
been developing a novel algorithm to drastically enhance
the efficiency and scalability. We will demonstrate its va-
lidity and usefulness for the Eulerian FSI simulation.

2 Numerical methods
2.1 On Eulerian description

As in many analyses for biological systems, the fluid and
solid phases are assumed to be incompressible. The gov-
erning equations consist of mass and momentum conserva-
tions. The basic equations are discretized on a fixed Carte-
sian mesh in a finite-difference manner. The hyperelastic
dynamics is incorporated into a standard incompressible
flow solver to realize the fluid-structure coupling analysis.
Here, we shall focus on an evaluation of the stress tensor,
which is a key issue in the Eulerian formulation. For more
detailed description, see [2].

In the Lagrangian method, the fluid and solid phases are
distinguished by the boundary fitted mesh, and the level of
solid deformation is quantified by the relative change in the
adjacent material points. By contrast, in the present Eule-
rian method [2], to represent the kinematics of structure,
the solid volume fraction φs and the left Cauchy-Green
deformation tensor B are defined on each grid point, and
temporally updated by solving transport equations

∂tφs + v · ∇φs = 0, (1)

∂tB + v · ∇B = L · B + B · LL, (2)

where v denotes the velocity vector, and L(= ∇vT ) the
velocity gradient tensor. The Cauchy stress tensor σ is
written in a fluid-solid mixture form. For example, a sys-
tem consisting of Newtonian fluid and neo-Hookean mate-
rial obeys

σ = − PI + {(1 − φs)μf + φsμs}(L + LT )

+ φsG(B − tr(B)I/3),
(3)

where P denotes the pressure, μ the viscosity, and G the
modulus of transverse elasticity.

2.2 Artificial compressibility method with adap-
tive parameters

The pressure deviation p from the driving pressure gra-
dient to pump the system is given to satisfy 〈p〉 = 0 (here,
〈...〉 stands for the volume average over the whole com-
putational domain). Following the SMAC algorithm, we
introduce the unprojection and projection steps to update
the variables. The predicted velocity v∗ is supposed to be
given after the unprojection step. Following [7], we write
the incremental pressure δp(= pN+1 − pN) as

δp = −(CD∗ + ΓpN )/(Δt), (4)

where D(= ρ∇·v) denotes the divergence of the mass flux.
At the projection step, the velocity is updated as

vN+1 = v∗ − (Δt)ρ−1∇(δp). (5)

Although the solenoidal condition (∇ · v = 0) is not per-
fectly satisfied in the ACM, it is approximated as exactly
as possible. From (4) and (5), we obtain

〈(DN+1)2〉 = 〈(D∗)2〉 + 2〈D∗∇2D∗〉C + 〈(∇2D∗)2〉C2

+ 〈(∇2pN)2〉Γ2 + 2〈D∗∇2pN 〉Γ + 2〈(∇2D∗)(∇2pN)〉CΓ.

(6)

Under the condition of Γ ≥ 0, the parameters C and Γ
are dynamically determined to minimize 〈(DN+1)2〉. In
a MPI parallelization, the advocated algorithm involves
no iterative procedures, and thus considerably reduces the
amount of the memory access and adjacent communica-
tion. When the second-order finite difference is applied,
the pseudo Mach number was found to have a upper limit
2
√

3η (here, η is the CFL number based on the maximum
advection speed), guaranteeing the computed velocity field
to be nearly incompressible as long as η is sufficiently
smaller than unity.



3 Results and discussion
To demonstrate the validity of the method, simulated

results of a channel flow involving 16 discoid biconcave
particles are exemplified. For comparison, two kinds of
simulations are performed: one is based on the SMAC al-
gorithm, in which the Fast Fourier Transform (FFT) and
the Tri-Diagonal Matrix Algorithm (TDMA) are applied
to exactly solving the pressure Poisson equation, while the
other is based on the present ACM. The particle position
and orientation are shown in Fig. 1. The particles de-
form and translate in the downstream. As the time goes
on, they rotate and tend to be more mixed. There are no
significant discrepancies in the particle position and shape
between the results based on the SMAC algorithm and
present ACM. To further check whether an energy con-
servation is correctly captured, we report a budget of the
overall kinetic-energy transport in Fig. 2. The chained
curve in Fig. 2 corresponds to the summation of all the
contributions, which should be zero. Its absolute value is
much smaller than the variation of the contributions of the
individual terms. Therefore, the system is well conserved
during the simulation in view of the energy balance, and
the energy exchange between the fluid and solid phases via
the solid deformation is reasonably guaranteed.

Fig. 1. The snapshots of hyperelastic particles in a three-
dimensional Poiseuille flow at t = 6.4ms. The computational
extent is Lx × Ly × Lz = 21.12μm × 21.12μm × 21.12μm, and
the number of grid points is Mx ×My ×Mz = 128× 128× 128.
The material properties and the driving pressure gradient are
scaled using the density ρ, and set to μ/ρ = 1 (μm)2/μs,
G/ρ = 2 × 10−2 (μm)2/(μs)2 and −ΔP/(ρLx) = 2 × 10−4

μm/(μs)2. The left and right panels show the results based on
the SMAC method using FFT-TDMA and those on the present
ACM, respectively. The colors on the walls indicate the magni-
tude of the shear stress.
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Fig. 2. The budget of the kinetic-energy transport in the
Poiseuille flow containing 16 particles using the present ACM.
Therein, dK/dt, I, εs and εf denote the kinetic-energy rate, the
energy input rate, the strain energy rate, and the kinetic-energy
dissipation rate, respectively.

To demonstrate the applicability of the novel formula-
tion and algorithm to massively parallel computing, the
FSI simulations in the channel are also performed for vari-
ous number N of compute nodes on the K computer. Fix-
ing the problem size per node, we conduct weak scaling
tests, and report the performance in Fig. 3. An ex-

cellent scalability is found therein. Notably, the perfor-
mance ratio is 46.6%, 45.6% and 43.7% for N = 1, N = 2
and N = 12, 288, respectively, revealing unprecedentedly
high efficiency among numerical simulations of incompress-
ible fluid/structure dynamics performed on state-of-the-
art scalar-type supercomputers.
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Fig. 3. The ratio of the sustained performance to the peak
performance of the K computer as a function of the number
N of compute nodes. The number of grid points per node is
512 × 128 × 128.

4 Conclusion
A novel numerical method for fluid-structure interac-

tion systems has been developed. It was applied to the
three-dimensional simulation of the channel flow includ-
ing hyperelastic particles. Its validity and also high effi-
ciency and scalability in massively parallel computing were
demonstrated.
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