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1 Introduction 
     The finite integration (FI) method [1]-[4] has been studied to 
realize time-domain electromagnetic field computation using 
unstructured spatial grid. However, similarly to the FDTD 
method, the FI method uses a uniform time-step, which is 
restricted by the CFL condition based on the smallest spatial 
grid size. Previous works [5], [6] introduced a space-time FI 
method that achieves non-uniform time-steps naturally on 3D 
and 4D space-time grids with 2D and 3D space. However, it was 
found that a rough construction of space-time grid results in 
computational inaccuracy because of unphysical wave-reflection. 
Ref. [7] proposed improved 3D and 4D space-time grids for 
accurate electromagnetic wave computation. This study 
proposes another improved FI method.  

2 Finite Integration Method on a Space–Time Grid 
    The coordinate system is denoted by: 
 (ct, x, y, z) = (x0, x1, x2, x3)   (1) 
where c = 1 / √(ε0μ0), and ε0 and μ0 are the electric and magnetic 
constants. The Maxwell equations are given as : 
 dF = 0 ,  dG = J     (2) 
 F = − Σi=1

3 Eidx0dxi + Σj=1
3 Bjdxkdxl, 

 G = Σi=1
3 Hidx0dxi + Σj=1

3 Djdxkdxl, 
 J = cρdx1dx2dx3 − Σj=1

3Jjdx0dxkdxl   (3) 
where (B1, B2, B3) = cB, (D1, D2, D3) = cD, and ρ is the electric 
charge density; (j, k, l) is a cyclic permutation of (1, 2, 3). 
     The integrated form of (3) is given as: 

 0
p
=∫ Ω∂F , ∫∫ ΩΩ∂

=
dd
JG    (4) 

where Ωp and Ωd are hypersurfaces in space-time; their 
boundaries ∂Ωp and ∂Ωd are represented by the faces of primal 
and dual grids in the FI method. The electromagnetic variables 
are defined in the FI method as: 
 f = ∫SpF , g = ∫SdG,    (5) 
where Sp and Sd are the faces of primal and dual grids. 
     The Hodge dual grid [6] is used to express the constitutive 
equation simply as: 
 ∫Sdcrdx0dxj / ∫Spdxkdxl = −∫Sddxkdxl / ∫Spcrdx0dxj = a  (6) 
 cr = 1 / √(εrμr)    (7) 
where a is a constant determined for each pair of Sp and Sd; (j, k, 
l) is a cyclic permutations of (1, 2, 3); εr and μr are the specific 
permittivity and permeability. Thereby, 
 f = Zg / a     (8) 
where Z = √(μrμ0/εrε0) is the impedance.  

3 3D Space–Time Grid with 2D Space 
     Figure 1 illustrates space-time grids where domains (I) and 
(II) have uniform time-steps Δx0 and Δx0/2, respectively; 
domain (III) is the connecting domain. The grid shown in Fig. 
1(a) was proposed in [5] that causes unphysical wave-reflection 
because of spatial irregularity as reported in [5].  This paper 
proposes the grid shown in Fig. 1(b) to suppress the unphysical 
reflection. The former and latter grids are called type A and type 
B in this article.  

     Type B grid has dual edges that are not orthogonal to 
corresponding primal faces as shown in Fig. 2. This study 
examines two types of constitutive relations described by Eqs. 
(9) and (10). 
 exi = εrε0 dxi / Δl ,  eyi = εrε0 dyi / Δl  (i = 1, 2) (9) 
 ex1 = εrε0 (dx1 + dxy/2) ,  ey1 = εrε0 (dy1 − dxy/2) ,  
 ex2 = εrε0 [Δl dx2 − (1−Δl) dy2] / (1−2Δl) ,   
 ey2 = εrε0 [Δl dy2 − (1−Δl) dx2] / (1−2Δl)   (10) 
where d and e are the electric flux and the integration of electric 
field given by Eq. (5), respectively. Equation (10) gives more 
accurate approximation of constitutive relation than Eq. (9). 
     Fig. 3 portrays distributions of discrepancy ΔB3 between B3 
obtained in the same way as in [8] by the FDTD method and the 
FI method with the two space-time grids. The type A grid yields 
numerical error whereas the numerical error is suppressed by the 
type B grid with Eq. (10) type relation. 
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Fig. 1. Space-time grids: (a) type A and (b) type B. 
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Fig. 2. Coner of domain (III). 
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Fig. 3. Discrepancy of B3 between space-time FI method and 
FDTD method: (a) type A grid, (b) type B grid with Eq. (9) 

relation, and (c) type B grid with Eq. (10) relation. 
 

4 4D Space–Time Grid with 3D Space 
     Figure 4 illustrates 4D space-time grids of type B at the 
corner of domain (III). A wave propagation is simulated 
similarly to [6], where electromagnetic wave is scattered by a 
cubic pore with εr = 1 surrounded by dielectric with εr = 5. 
Figures 5(b)(c) and (d) portray distributions of B3 given by the 
space-time FI method with type A and B grids. For comparison, 
Fig. 5(a) depicts the distribution obtained using the FDTD 
method with the same uniform spatial grid and time-step as in 
domain (II), which is restricted by the smallest permittivity. The 
FDTD method requires about two times as much computation 
time as the space-time FI method. The type B grid with Eq. (10) 
type relation yields more accurate distribution than type A. The 
numerical instability is not observed even after x0 = 105Δx0. 
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Fig. 4. Space-time grid of type B where solid and dashed lines 
represent primal and dual grids: (left) primal grid, (right) primal 

and dual grids. 
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 (c)   (d) 
Fig. 5. Scattering of B3: (a) FDTD method, (b) type A grid, (c) 
type B grid with Eq. (9) relation, and type B grid with Eq. (10) 

relation. 
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