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1 Introduction

The canonical molecular orbital calculations of proteins
provide significant theoretical views, which are difficult to
observe experimentally, and are promising technology in
various fields such as drug discovery and nanoelectronics
devices [1]. Even with modern high-performance computers
and parallel technologies in quantum chemistry, however,
electronic structure calculations of proteins still remain a
time-consuming and laborious task. We aimed at the
development of computational methods to efficiently
calculate electronic structure of proteins in distributed
parallel computing, which becomes mainstream now. In
particular, efficiency of two-electron repulsion integral (ERI)
computations based on Cholesky decomposition (CD)
method is focused in this study.

The rest of paper is constructed as follows. In the section 2,
we discuss the theoretical foundation based on the CD
method and the use of the pivoted Cholesky decomposition
to calculate low-rank approximations of matrices. The
section 3 is devoted to numerical results using ProteinDF on
distributed memory parallel computer. Finally, we discuss
capabilities related to the analyses of electronic structure
calculations of proteins in the section 4.

2 Methodology

2.1

In self-consistent field (SCF) calculations, the construction of
the Fock matrix is one of the most time-consuming steps. In
particular, much computer time is spent on the task of
computing the Coulomb part J and the Fock exchange part K,
which include ERI calculations. The matrix J and K are
formally computed as follows:

Joa = ) Pes(palrs) (1)
Kpq = Z qu(pqlrs) (2)

Here, P denotes the density matrix, and the ERI (pq|rs)
defined in Eq. (3).
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The super matrix V;; ;, which is defined by V;;,;, = (pqlrs),
is symmetric and positive semi-definite, and can be
decomposed by means of the Cholesky procedure into a
product of a lower triangular matrix L as follows:
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The accuracy of the Cholesky representation of the ERI, Eq.

(4), is measured by the residual. Consequently, the accuracy

can be controlled by decomposition threshold, 6.
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According to some computational results, the Cholesky
decomposition (CD) method gives reliable, and balanced
results even with rather high decomposition thresholds
(6 = 1.0x107%) [2].

The number of dimensions of the original super matrix V
formally becomes N(N + 1)/2 with N basis functions, so
such huge memory for the matrix may not be assigned in
each computer node. Therefore, the size of the matrix is
reduced in advance of the CDAM method [3]. The diagonal
elements of the V matrix, V,q ,q = (pqlpq), are preliminarily
estimated and screened by threshold t.
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Here, the AO products, I = pq, can be regarded as candidates
of the Cholesky basis. Note that the screening technique of
the Eq. (6) is associated with the Cauchy-Schwarz screening,
which is very useful for providing rigorous ERI bound. Thus,
the number of non-negligible basis function pairs will scale
as O(N), thanks to locality of basis functions.

Once the Cholesky vectors L are obtained, the Coulomb part
J and exchange part K of the Fock matrix are approximately
gained as:
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In this study, the matrix X is generated by @, which is given
by the CD of the density matrix P, instead of MO coefficient
matrix. Then, we can use the density matrix as initial guess
for the SCF calculation.

Once L is estimated, the procedures in the J and K matrices
generation can be given by simple matrix-matrix operations
without the ERI estimations. Since the well-optimized linear
algebra library, such as BLAS, for various computer systems
is available, the J and K matrices are constructed by simple
and effective method.

Ll,pr Qri 9

(10)

2.2 Low-rank

decomposition

approximate Cholesky

To get smaller super matrix without losing calculation
precision is an advantage in terms of memory capacity and
number of floating-point arithmetic operations. The CD of n-
dimensional matrix usually gives n-dimensional triangular
matrix. In this study, the pivoted CD to compute low-rank
approximations [4] is adopted. The resulting truncation
error is rigorously controlled in terms of the trace norm.



In general, accessing all elements of the full matrix is needed
in CD. Consequently, the huge full matrix should be
temporarily stored in memory. The elements that are left
unused in the pivoted CD are also included in the full matrix.
In order to produce Cholesky vectors on limited memory, it
is desired that the full matrix is not kept in memory, and that
the ERIs, which are elements of the full matrix, are directly
calculated. Putting all the above components together, we
arrive at the algorithm (Fig. 1). Since there is no necessary to
obtain the huge super matrix temporarily, the Cholesky
vectors are gained by minimal computer resources.

Although the Cholesky vectors are directly obtained and the
huge super matrix is not required, the Cholesky vectors
remains large size, and may not be stored in memory. Hence
the Cholesky vectors L should be distributed to all
processesor elements (PEs). In this study, the entries of the
Cholesky vectors are stored as set of row vectors for
efficiency. On this algorithm, the access direction of the
matrix is only the row direction. With keeping diagonal
elements, £, ., in all PEs, the operations for row-vectors
elements of the Cholesky vectors held in each PE are
independent (line: 11), so no communications are required.
And, the molecular integrals may be carried out only for the
row-vectors of Cholesky vectors (line: 9), This method can
be directly parallel processing the Cholesky vectors.

3 Results and discussion

We implemented this method to ProteinDF program [5]. The
canonical molecular orbital calculations of Insulin (51
residues) and Interleukin (133 residues) are carried out by
using ProteinDF. The number of AO pairs in Insulin and
Interleukin, which were 9,952,491 and 70,918,095, were
dramatically reduced to 169,842(1.7%) and 460,785 (0.6%)
by CDAM pre-screening (t = 10™%), respectively. So, the
combination of CDAM and pivoted CD were considered to be
valid and feasible for canonical molecular orbital
computations. In order to clarify effective threshold value,
further investigation is required.

4 Conclusion

A new ERI parallel computation method based on modified
CDAM method and the pivoted low-approximate CD was
developed and implemented to ProteinDF. The method was
able to control the efficiency of molecular integral
estimations with improving the accuracy. As the way of
achievement on the ERI computation efficiency in this
method resembles the well-known cutoff method, negligible
ERI values are strictly estimated based on CD. Additionally,

the method gives smaller and optimized Cholesky vectors.
We emphasis that the Cholesky vectors L are calculated and
stored before the SCF loop, the Coulomb and exchange part
of Fock matrix are given by the multiplication of matrices,
without expensive ERI computations. Though required
memory is larger than the direct method, in which the ERIs
are calculated at every SCF iteration in return, we can get
high efficiency of computation on the distributed parallel
computer systems. The memory size per computer node
tends to increase, and this problem will be overcome. We
suppose that this method is useful for electronic structure
calculation of the large molecule system in parallel and
distributed memory system.

Acknowledgements

A part of this research was done in “Revolutionary
Simulation Software for the 21st century (RSS21)” project
supported by Research and Development for Next-
generation Information Technology of Ministry of Education,
Culture, Sports, Science and Technology (MEXT). And this
research was partly supported by “Research and
Development of the Next-Generation Integrated Simulation
of Living Matter”, a part of the Development and Use of the
Next-Generation Supercomputer Project of the Ministry of
Education, Culture, Sports, Science and Technology (MEXT).
We thank the Institute of Statistical Mathematics for the
facilities and the use of Fujitsu PRIMERGY RX200S5.

References

[1] Y. Tokita, S. Yamada, W. Luo, Y. Goto, N. Bouley-Ford, H.
Nakajima, Y. Watanabe, Protein Photoconductors and
Photodiodes, Angew. Chem. Int. Ed., 50, 11663 -11666, 2011.

[2] F. Aquilante, R. Lindh, T.B. Pedersen, Unbiased auxiliary basis
sets for accurate two-electron integral approximations, ]. Chem.
Phys., 127,114107, 2007.

[3] Y.Okiyam, T. Nakano, K. Yamashita, Y. Mochizuki, N. Taguchi, S.
Tanaka, Acceleration of fragment molecular orbital
calculations with Cholesky decomposition approach, Chemical
Physics Letters, 490, 84-89, 2010.

[4] H. Harbrechta, M. Petersa, R. Schneider, On the low-rank
approximation by the pivoted Cholesky decomposition, Appl.
Numer. Math., 62, 428-440, 2012.

[5] T. Inaba, F. Sato, Development of parallel density functional
program using distributed matrix to calculate all-electron
canonical wavefunction of large molecules, J. Comput. Chem.,
28,984-995, 2007.

line pseudo code

1 Dbegin

2 setm:= 0;

3 set d := diag(A) and error = ||d||;;

4 initialize m := (1,2, ...,n);

5 while error > edo

6 seti:= argmax{dnj:j =mm+1, ...,n};

7 swap m,, and m;;

8 set £y, = \[dnr, ;

9 compute molecular integral a, , = (,,|m;) (i;m + 1:n)
10 form+1<i<ndo
11 compute € = (an, 7, — 276" €jny Ly )/ e
12 update dy, = dy, — ¥a ;i
13 compute error == Y, 1 dn;
14 increasem:=m+1;
15 end

Fig. 1. Pseudo code for pivoted Cholesky decomposition of ERIs



