
Immersive 4D Volume Visualization in CAVE

Yuki Yamaura1, Youhei Masada1, Akira Kageyama1, and Kouhei Yamada1

1Graduate School of System Informatics, Kobe University, Japan

1 Introduction

CAVE is a room-sized immersive virtual reality system
developed by Electronic Visualization Laboratory at Uni-
versity of Illinois, Chicago [1]. A viewer in CAVE room,
which is surrounded by screens on which stereo images
are projected, can observe virtual 3 dimensional (3D) ob-
jects from any position, angle and direction through head
tracking technology. The viewer can interact, in addition,
with the objects using a potable controller, called wand,
which is also under the tracking control. Not only for
the demonstration of virtual 3D objects, it has also grown
in its importance as a tool for visualization of simulation
data aimed at the scientists, and has been used in various
research fields [2]

The amount of simulation data generated on supercom-
puters becomes larger year by year with increasing su-
percomputer specifications, such as processing power and
storage capacity. As scientists gain access to more power-
ful computers, they attempt to tackle larger, more complex
problems. Progressive approaches are then required for the
visualization of such huge and complex simulation data in
CAVE. For the more efficient data analysis and visualiza-
tion, it is reported in this paper that we had developed a
4D volume rendering library especially for displaying time-
evolving, sequential, 3D scalar data in CAVE.

2 3D Texture Slicing

Among some visualization methods for time-evolving
3D scalar data [3], we choose 3D texture slicing technique
which is one of volume rendering methods. A standard
algorithm of 3D texture slicing is summarize as follows:

1. conversion of 3D scalar data into 3D texture data with
RGB and Alpha using a transfer function we defined
in preprocess.

2. generation of a number of slice planes perpendicular
to the viewer’s line of sight.

3. mapping of 3D texture onto the planes and drawing
it in back-to-front order.

There exists two procedures to transfer time-evolving
3D scalar data processed by 3D texture slicing method
from CPU RAM to GPU memory. It would be the sim-
plest that all the time-sequential 3D data is transferred
at first to GPU memory and then is cached for the vi-
sualization. Since all the data must be stored in GPU, a
large size of memory is required for this procedure. In con-
trast, we can take an another approach in which 3D data
at each time step is transferred one after the other when
needed. The latter one is adopted in our 4D volume ren-
dering library because it can save GPU memory and then
be applicable to huge times-sequential data generated on
massive supercomputers.

Fig. 1. Comparision between VSVR algorithm and our
new algorithm.

3 Implementation: 4D Volume Rendering

A Very Simple Volume Rendering code, VSVR, which
is developed by Thomas Lewiner on the basis of basic
OpenGL features for the efficient visualization of 3D scalar
data [4], is adopted as a reference source code to implement
our fast volume rendering library.

Two new codes are installed into VSVR to make it work
with CAVE systems and to get faster rendering of 3D
scalar data.

3.1 Immersion

The original VSVR is specified to commonly-used 2D
displays, and thus supposes at all times a situation in
which viewer’s line of sight is perpendicular to the display.
The slice plane is then set consistently to be parallel to
the screen. However in CAVE, it is not the case. Since the
angle between viewer’s line of sight and a normal vector
of screens is changed at every moment, we should make
the slice plane being always perpendicular to the line of
sight, not to the screen, in CAVE systems. By taking in
real time the information of viewer’s line of sight using
the head tracking system, the direction of slice planes is
regulated incessantly in our rendering procedures.

We use CAVELib to display volume data in CAVE sys-
tems. Since a program with CAVELib (CAVE application)
is generally multi-processed or multi-threaded, we have to
synchronize visualization data generated by multiple pro-
cesses/threads. For an instantaneous synchronization, we
use a double buffering technique.

3.2 Pixel Buffer Object and Rendering Algo-
rithm

VSVR uses glTexture3D function not only for trans-
ferring data from CPU to GPU, but also for converting
scalar data to texture data with RGB, and Alpha. This
function is easy to use, but takes a long time to transfer
data. We thus take an alternative approach using Pixel



Buffer Object (PBO), instead of this function, to acceler-
ate rendering speed. Since PBO stores pixel data into the
buffer object, we can transfer 3D data faster to and from a
graphics card through direct memory access. When adopt-
ing PBO, we have to convert scalar data to texture data,
in other word, to apply a “transfer function” by ourselves.
The scalar data is transformed at first into initialization
block in our library to reduce rendering time.

The new algorithm we proposed for realizing a fast 3D
volume rendering of time-sequential data in CAVE is or-
ganized as follows:

1. conversion of 3D scalar data into 3D texture data
with RGB and Alpha using a transfer function by
ourselves.

2. transfer of 3D texture data from CPU RAM to
OpenGL memory as PBO and generation of 3D tex-
ture from PBO.

3. generation of a number of slice planes perpendicular
to the viewer’s line of sight.

4. mapping 3D texture to the planes and drawing it in
back-to-front order.

5. forwarding a time step to the next.

(This cycle is repeated at every time step).
A schematic picture in Fig. 1 presents a new algorithm

we proposed for the fast 3D volume rendering in CAVE in
comparison with the algorithm adopted in VSVR.

4 Volume Rendering Applications in CAVE

Using our 4D volume rendering library, we have devel-
oped an application framework for CAVE, called Multi-
verse [5][6]. Muliteverse is itself a CAVE application and
can launch several visualization programs. In Multiverse,
we have employed our new volume rendering library in two
visualization programs: SeismicWave program visualizes
a simulation data of propagating seismic-wave, and Cell-
Division program is for a 3D time-sequential microscopic
images of mouse embryo.

Fig. 2. The demonstrates of a CAVE application “Seis-
micWave” in which time sequential simulation data of
seismic-wave propagation is displayed in VR space. The
simulation data adopted in this application is defined on
256×512×160 grids and has a total size of about 100Mbyte
for each time [7]. Note that, in the SeismicWave program,
hundreds of time-sequential data are continuously loaded
and is smoothly exhibited in CAVE system using our fast
volume rendering library.

5 Conclusion

We have developed a volume rendering library based on
3D texture slicing method for CAVE systems. This library
has utilized several techniques for accelerating rendering
speed, such as using the transfer function in preprocess
and adopting PBO for data transfer. To verify the effec-
tiveness of the new algorithm we employed in our volume
rendering library, we have designed two applications to vi-
sualize large scale 3D scalar data in CAVE systems, that is
SeismicWave and CellDivision. Our 4D volume rendering
library is applicable to all the CAVE application devel-
oped on the basis of OpenGL. We believe that it would be
helpful for efficient and effective data analysis in various
research fields, and might boost scientific findings by using
CAVE.

Fig. 2. Time sequence of snapshots of seismic-wave prop-
agation simulation.

Acknowledgement

The seismic wave simulation data shown in Fig. 2 was
provide by Prof. T. Furumura at University of Tokyo.

References

[1] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti, Surround-
screen projection-based virtual reality: the design and im-
plementation of the CAVE, Proc. SIGGRAPH ’93, 135-
142, 1993

[2] Kageyama, A., Miyagoshi, T., & Sato, T., Formation of
current coils in geodynamo simulations, Nature, vol.454,
1106-1109, 2008

[3] A. C. Telea, Data Visualization, A K Peters, Ltd., Florida,
2007

[4] T. Lewiner, VSVR: a very simple volume rendering
implementation with 3D textures, http://zeus.mat.puc-
rio.br/tomlew/tomlew uk.php

[5] A. Kageyama, Y. Yamaura, D. Meno, Y. Masada, K.
Yoshizaki, and K. Yamada, Application Launcher for
CAVEs, International Conference on Modeling and Sim-
ulation Technology (JSST2011), Tokai Univ., Takanawa,
Japan, 2011

[6] Y. Yamaura, D. Meno, A. Kageyama, Y. Masada, K.
Yoshizaki, and K. Yamada, Development of an applica-
tion launcher for CAVE systems, VRSJ the 16th Annual
Conference, 69-72, 2011

[7] Furumura, T., B.L.N. Kennett and K. Koketsu, Visualiza-

tion of 3-D wave propagation from the 2000 Tottori-ken

Seibu, Japan earthquake: Observation and numerical sim-

ulation, Bull. Seism. Soc. Am., 91, 4, 667-682, 2003


