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1.  Introduction 

The gyrokinetic toroidal five-dimensional Eulerian code 

GT5D [1] is one of the first-principle simulation codes for the 

fusion plasma turbulence. The code has been parallelized and 

ported on some massively parallel platforms, and then, it has 

been confirmed that the code achieves good parallel efficiency 

on them. In GT5D code, the second-order additive 

semi-implicit Runge-Kutta (ASIRK) method [2] is adopted for 

the time-evolution simulation. Therefore, we need to solve the 

linear equations, whose coefficient matrices are asymmetric. In 

the original code, the generalized conjugate residual (GCR) 

method without preconditioning has been so far utilized. Thus, 

it is expected that the convergence property can be improved by 

substituting a more suitable preconditioned solver. In this 

research, we examine some preconditioned Krylov subspace 

methods and measure their convergence properties. Moreover, 

we evaluate the parallel performance of the solvers. 

 

2.  Convergence Property of Krylov Subspace Methods 

 

2.1  Preconditioners 

Here, we discuss the effect of preconditioning for the linear 

equations. At first, we examine the convergence property of the 

incomplete LU (ILU) decomposition. The ILU decomposition 

can improve the convergence property for various linear 

equations. However, when we employ the ILU decomposition, 

the convergence property in GT5D code becomes worse. The 

reason is that the ILU decomposition does not approximate the 

coefficient matrix well, since the diagonal elements of the 

coefficient matrix are small as compared with the off-diagonal 

elements. 

Next, we propose the preconditioning based on the SOR 

iteration method. The preconditioning is executed according to 

the following formula  














  



 


1

1

11
i

j

N

ij

n

jij

n

jiji

ii

n

i

n

i xmxmb
m

xx
 , 

where mij is the ( i, j)-element of preconditioner M, which is an 

approximate matrix of the coefficient matrix. Table 1 shows the 

effect of the preconditioning based on the SOR iteration. The 

problem size is 60×60×32×28 in xyzv-space. Here, since the 

coefficient matrix of the linear equation is given by 17 stencil 

grids in 4-dimensional space, the preconditioner can be 

composed of the elements in each direction. Therefore, we 

compare the convergence property for the some preconditioners 

covering all or partial dimensions. The result shows that the 

preconditioner covering all directions is the best and the effect 

of the v-direction does not almost exist. 

 

Table 1. Relationship between the dimensions covered by the 

preconditioner M and the number of iterations for 

preconditioned GCR method. 

Preconditioner 

(covering dimensions) 

ω Number of 

iterations 

None － 466 

x, y-direction － Not converge 

x, z –direction 0.047 289 

y, z –direction 0.043 282 

z, v –direction 0.049 347 

x –direction － Not converge 

z –direction 0.049 354 

v –direction 1.8 466 

x, y, z, v –direction 

(all dimensions) 
0.054 181 

 

2.2 Convergence Property of Preconditioned Krylov 

Subspace Methods 

Here, we examine the effects of the preconditioners covering 

all or some dimendions for GCR method, Bi-CGstab method, 

and GMRES method.  

 GCR method 

We show the convergence property in Figure 1. The result 

demonstrates that the number of iterations decreases from 466 

to 181 by utilizing the preconditioning.  

 

 Bi-CGstab method 

Figure 2 shows the convergence property of the Bi-CGstab 

method. The convergence of the Bi-CGstab method without 

preconditioning is very slow (the method can converge by 

about 5000 iterations). The preconditioning yields a large 

convergence accelaration. 

 

 GMRES method 

Figure 3 shows the convergence property of the Bi-CGstab 

method. Here, the restart parameter is 4. The number of 

iterations decreases to about 1/4 by utilizing the 



preconditioning.  

These results demonstrate that the preconditioning based on 

the SOR iteration method is suitable for this equation. 
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Figure 1. Convergence property of GCR method.  
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Figure 2. Convergence property of Bi-CGstab method. The 

convergence of the method without preconditioning is very 

slow. On the other hand, the preconditioned method can solve 

the equation very fast. 
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Figure 3. Convergence property of GMRES method. 

The restart parameter is 4. The number of iterations decreases 

to about 1/4 by utilizing the preconditioning. 

3.  Numerical Experiments 

  We examine the parallel performance of the preconditioned 

solvers on 256 cores of Fujitsu BX900 in Japan Atomic Energy 

Agency. The problem size is 160×160×32×128 in xyzv-space. 

Since table 1 shows that the effect of the preconditioning for 

the ν-direction does not almost exist, we employ the 

preconditioners covering the all directions and x,y,z directions. 

We show the number of the iterations and the elapsed times in 

Table 2. The result indicates that the effects of both 

preconditioners are almost the same. Since calculation cost of 

the x,y,z-direction preconditioner is less than that of 

all-direction one, the x,y,z-direction preconditioner can be 

performed faster.  

 

 

Table 2. Number of iterations and Elapsed time on 256 cores of 

BX900. P and Pxyz means all-direction preconditioner and 

x,y,z-direction one, respectively. Since Bi-CGstab method 

without preconditioning does not converge within 1000 

iterations, its result is omitted. 

 

4.  Conclusion 

  We examined the convergence property of some Krylov 

subspace methods for the linear equation on GT5D code. The 

result showed that the Bi-CGstab method with the 

preconditioning based on the SOR iteration is the fastest solver.  
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method ω Number of 

iterations 

Elapsed time 

(sec) 

GCR  － 641 110.7195 

PGCR 0.037 260 107.2379 

PxyzGCR  0.040 256 104.7527 

PBi-CGSTAB  0.038 144 110.8538 

PxyzBi-CGSTAB  0.038 141  97.9747 

GMRES  － 210 208.4488 

PGMRES 0.047 60 130.5454 

PxyzGMRES  0.047 60 118.5158 


