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1 Introduction 

In the recent years, the high performance computing (HPC) 

environment has been improved. Thus, the volume dataset 

generated from HPC often resulted in the high resolution with 

respect to the spatial and temporal dimension. This situation 

requires a good visualization method, which can handle such a 

large-scale volume dataset. 

In this paper, we propose a volume reconstruction method 

that employs tetrahedral cells generated at each sub-volume. 

The sub-volume is defined by applying a blocking operation to 

an original volume with a block size. Additional vertices in the 

tetrahedral cells are calculated by using a cubic b-spline 

interpolation function calculated in an original volume. We 

confirmed the effectiveness by calculating a compression ratio 

for time-varying volume dataset.  

2 Related Work 

Since the volume data is defined at discrete points, which 

are usually sampled from a continuous scalar field, many 

methods have been proposed for seeking a continuous and 

accurate volume representation. Among them, the successful 

application of b-spline in signal and image processing field [1] 

was promising and an efficient algorithm to calculate the b-

spline coefficients has been proposed [2][3]. Bajaj C.L.[4] et al 

have verified that the cubic b-spline is also a perfect fit for 

volume reconstruction since it would yield less aliasing of high 

frequency compared to a quadratic b-spline and also keep a 

second-order continuity. 

3 Volume Reconstruction System 

In our proposed reconstruction system, we first divide the 

volume into many blocks with the same block size, and then 

subdivide every block into 24 tetrahedra. Afterwards, the value 

of the vertices newly generated would be evaluated by fast cubic 

b-spline algorithm.  

3.1 Block Division 

With the original volume data, the block division is done 

with two levels.  

The first-level division is to divide it into many blocks with 

the same block size (left figure of Figure 1). Obviously, this 

would decrease the number of the vertices greatly but it can also 

make a great data loss. As a result, we also propose a second-

level division to subdivide the block into 24 tetrahedra (right 

figure of Figure 1) so that the area inside the block can also be 

also represented well.  Moreover, since the block is subdivided 

into tetrahedra, it would not lead too much value gap. 

With the block division, center points of every faces and 

gravity point of the block (black dots in Figure 1) would be 

needed. As a result, an evaluation method is needed to evaluate 

these values. 

 
Fig.1. Block division with block size = 3 

3.2 Fast Cubic B-spline Reconstruction 

Ideally, we think the value of every newly generated point 

should keep continuity with the neighbour vertex points so that 

less data gap would be generated. Since the good performance 

of cubic b-spine, we utilize it to evaluate the value of the newly 

generated vertices. The basic formula of the cubic b-spine 

method can be written as: 
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where the  ( ) means the reconstructed signal,    means the b-

spline coefficients and   ( ) means the b-spline kernel. Here, 

the b-spline kernel can be defined as: 
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And for the coefficients of             , we use the fast 

algorithm proposed by Bajaj C. L. et al [4]. The computation of 

coefficients is done with the recursive process with the initial 

values of (4). Here,   ( )  is the original scalar values, and 

superscript of + and – are used to specify the recursive process.  
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And then, the recursive process 
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yields exact B-spline coefficients       
 , where    √   . 

The computation of   
  can be accelerated by neglecting 

small terms. Given an error control tolerance  , we compute 
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And if    ,   
  would be replaced with 
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which can be computed using the Horner scheme for evaluating 

a polynomial. This could accelerate the computation remarkably. 

 

 



 

(d) Block size = 5 (e) Block size = 6 (f) Block size = 7 

(a) Original data (a) Cubic b-spline evaluation 

Fig.2 Rendering Result with PBVR for different block size 

(c) Block size = 3 (b) Block size =2 

(b) Linear evaluation 

4 Experiments and Results 

In this paper, we apply our method on the time-varying 

dataset obtained from a turbulent combustion simulation. The 

grid structure is Cartesian with uniform spacing. There are 

480 720 120 voxels, and a total of 122 time steps. The value 

of the vertices is composed in the float type. The experiment 

results with different block size are shown as the Table 1. And 

the rendering results for different block size by Particle-Based 

Volume Rendering (PBVR) [5] with phong shading are shown in 

Figure 2 (as the limitation of space, the image of block size 

equals 4 is omitted.). PBVR is a stochastic rendering method, 

which can provide a good performance for both structured 

volume data and unstructured volume data by generating 

particles from the volume data. The data used here is the Y 

modality of time step 35. The experiment is conducted with 

Intel Core i7-2820QM CPU (4 cores), NVidia GeForce 

GTX580M 2GB GPU, and 16GB RAM. 

Here, we calculate the compression ratio by calculating 

compressed data size over original data size. From the Table 1 

we can see, even though tetrahedral cells are increased, the 

compression ratio for all time steps performs very well since the 

added coordinate and connection information for the tetrahedral 

cells are needed only once for all steps. Moreover, the average 

error is also computed from: 
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where,   is the vertices number of the original volume,     
  is 

the normalized value of the original volume at vertex  , and  

    
  is the normalized vertex value also at vertex   interpolated 

linearly from the compressed volume. 

5 Discussion and Conclusions  

The result of Figure 2 shows that when the block size is 

smaller than 5 our reconstruction system would provide a clear 

and smooth image quality. Moreover, as we use the cubic b-

spline as the evaluation method to evaluate the newly generated 

vertices after the block division, the comparison with using 

linear interpolation as the evaluation method is also shown in 

Figure 3 (local area of the same data to Figure 2 with block size 

2). We can see that the cubic b-spline evaluation can actually 

provide a good image quality. 

On the other hand, from equation (1) we can see, the cubic 

b-spline coefficients would have a (   ) data size, where   is 

the number of vertices of the original volume. As a result, after 

the reconstruction is done, the coefficients of the cubic b-spline 

are deleted to save the storage space. However, if we also take 

these coefficients into the visualization process of the 

reconstructed volume, the image quality might be even better 

because everywhere inside the tetrahedra cell can be 

interpolated by cubic b-spline. This approach would be optimal 

if we can also compress the coefficients so that it would not cost 

so much storage space. This would be done in our future work. 

In this paper, we proposed a volume reconstruction method 

with block division based on the fast cubic b-spline evaluation. 

From the above experiments and results, we can see our volume 

reconstruction system can provide a good compression ratio 

especially for time-varying dataset with a good image quality 

and a less compression error. 
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Table 1. Reconstruction with different block size (          ) 

Block Size Original Volume 2 3 4 5 6 7 

Number of Vertices 41,472,000 26,165,461 7,789,241 3,301,531 1,698,313 987,421 624,347 

Number of Tetrahedras 0 124,416,000 36,864,000 15,552,000 7,962,524 4,608,000 1,899,656 

Compression Ratio for All Steps 100% 74.5% 22.1% 9.4% 4.8% 2.8% 1.7% 

Processing Time N/A 20.886s 11.581s 5.174s 4.609s 3.409s 3.389s 

Average Error (E) N/A 0.044% 0.081% 0.11% 0.18% 0.22% 0.30% 

 

 

 

Fig.3 Comparison with linear 

evaluation (block size = 2) 


