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1 Introduction 

To study a complex dynamical behaviour of plasmas, e.g., 

space plasmas, laboratory plasmas and fusion plasmas,   

numerical simulations with high-resolution in space and time are 

prerequisite subjects. They are required not only to understand 

detailed physics of small-scale events such as saturations of 

short wave instabilities, micro turbulence and magnetic 

reconnections, but also to construct a macro-scale model to 

predict long-time behaviours of the plasmas because small-scale 

events often affect the long-time behaviours through changing 

local pressure gradients and/or magnetic configurations. In such 

a situation with high-resolution of the calculation grids, we need 

a huge number of grid points to model the region to guarantee 

the numerical stability. In the conventional codes which employ 

uniform grid system, due to the recent accelerative gains of 

massive computational powers such as “Kei” computer, it has 

learned to calculate the behaviours with a certain resolution 

level. Nevertheless, in order to cover whole phenomena from 

the micro-scale events to the macro-scale behaviours of the 

plasmas, it is not efficient at all in terms of the usage of limited 

computer resources such as the amount of memory and 

calculation time. 

For the purpose of carrying out the numerical simulations 

with high resolution and a high efficiency in the possible 

calculation time and computer resources, the Adaptive Mesh 

Refinement (AMR) algorithm is one of the strongest candidates. 

In the AMR simulation, grids with different spacing are 

dynamically created in hierarchical structures according to the 

local conditions of phenomena. Fine grids suitable to the local 

high density region are applied only there and other regions are 

simulated by using moderate size grids. Therefore, increment of 

the numerical cost due to the localized region is not serious by 

adopting the AMR technique. On the other hand, since the AMR 

algorithm has to treat hierarchical grid system, the AMR code 

should be programmed with extremely different structure of the 

computation flows and data set from the conventional 

simulation codes with uniform grid systems. In this paper, in 

order to implement the technique into the conventional plasma 

simulation codes, e.g., magneto hydrodynamic (MHD) code, 

kinetic plasma code, and so on, we developed the AMR module 

that is based on block-structured AMR framework. The 

effectiveness of the parallel computation in several computer 

architectures is also discussed. 

 

2 Block-Structured AMR Framework 

AMR techniques were implemented by several schemes, for 

example, cell-based refinement structure, patch-based meshes, 

block-structured framework, and so on. Furthermore, the 

techniques were applied for many scientific fields. Cell-based 

scheme is advantageous for saving the computer resources 

compared with other schemes, since we can save the refinement 

regions with minimum requirement resources. An AMR code, 

PARMER [1] is plasma particle code with AMR technique by 

using cell-based refinement structure and it has good efficiency 

in terms of saving the computer memories [2]. However, the 

cell-based implementation should uses quite different structure 

of data and grid systems from the conventional code that uses 

adjustable arrays. Therefore, for more good portability of 

implementation of the AMR method, the block-based AMR 

framework is more advantageous than the cell-based schemes. 

The block-structured AMR method was originally developed by 

Berger and Oliger [3] for hyperbolic equations. In this approach, 

self-similar blocks divide whole space of the simulation system. 

Since each block has self-similar grid systems with the size 

(Nx,Ny,Nz), several conventional simulation codes based on 

adjustable array systems are applicable in each block. As shown 

in Fig. 1, the developed module [4] employs the block-

structured AMR system and fully-tree-treaded (FTT) data 

structure [4] with three types of pointers, ‘neighbour’ for the 

Fig.1  A schematic illustration of the data structure adopted 

in the developed AMR module. Arrows indicate the 

pointers. Three types of pointers, neighbour, parent, and 

child, are used to specify the relationship between two 

Blocks. For simplicity, a case of two hierarchical levels is 

depicted in the top panel. The bottom panel shows the 

detail of the Block structure. In each block, self-similar 

rectangular grid systems with the size (Nx,Ny,Nz), physical 

variables such as fields, particles, and so on, and some flags 

for the refinement procedure are contained.  

 



 

surrounding grids, ‘parent’ for the original coarse grids in the 

lower hierarchy, and ‘child’ for the refined grids in the higher 

hierarchy.  These pointers are included into a structure of 

Fortran 90, and used to specify the relationship between two 

blocks. By using the FTT data structure, it becomes easy to 

handle the creation or removal of each hierarchical domain 

during a simulation run. 

 

3 Parallelization and Effectiveness of the AMR 

module in Plasma Simulations  

In various plasma simulation studies with particle codes, 

hydrodynamic codes, and so on, domain decomposition method 

is one of most familiar parallelization schemes. For the 

developed AMR module, we adopt the domain decomposition 

scheme for the parallelization using MPI library. While the 

AMR module is based on the block-based approach and the self-

similar refinement, it is designed to be applicable to the 

parallelization easily, because the communication between the 

blocks is quite similar to that between the decomposed 

calculation domain nodes. Thus, in the module, the 

communications for parallel processing should be executed at 

boundaries of each block.  

To demonstrate the effectiveness of the developed AMR 

module in parallelized plasma simulations, we carry out MHD 

simulations. The MHD equations are approximated either by the 

use of the 4th order central finite difference scheme or by the 

use of the 8th order compact finite difference scheme, which 

have been applied for the nonlinear MHD simulations of the 

Large Helical Device [6,7]. The suitability of the compact finite 

difference scheme to the AMR approach is also discussed. Since 

the block structure variable can include particles easily in each 

block domain, the developed module is applicable to plasma 

particle simulations. The portability of the module is another 

issue in the development. In this work, we demonstrate the 

plasma simulations with the AMR module in several computer 

architectures, e.g., HITACHI SR16000, Bull B510 and Cray 

XE6.  

 

4 Summary and Discussions 

We have been developing an AMR module for parallelized 

plasma simulation codes, and demonstrating the effectiveness of 

the module in the several computers. The developed module is 

designed for good portability into conventional plasma 

simulation codes and any computer architectures. In this work, 

we demonstrated the effectiveness of the module in different 

computers and simulation codes, i.e., MHD code and particle 

code in plasma physics.   

The open difficulty in the development of the AMR module 

is the load balancing of the parallelization between processors, 

because the number of spatial grids or particles belonging to 

each sub-domain is not always constant due to the AMR 

procedure. In each sub-domain, the hierarchical grid layers are 

adaptively created or deleted. To achieve the load balancing 

among sub-domains distributed to processors, we already obtain 

the method based on decomposition by the Morton ordered 

space-filling curve [8] in the development of PARMER code. 

With the help of the technique of PARMER, we should number 

all the blocks with the Morton ordered space-filling curve and 

divide the order into the number of the processors in such a 

manner that each sub-domain has approximately the same 

amount of the calculation costs, for example, numbers of blocks, 

particle calculation loops, and so on. 
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