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Abstract 

  Origami is the art of folding paper. It is a simple way of constructing geometric shapes from a single sheet of paper 
without using any cuts. There are two usual forms to document an origami model; diagrams and crease patterns. Diagrams 
are the step-by-step sequences that can be found in traditional origami books while crease pattern is the pattern of creases 
left on the paper after folding an origami model. The disadvantage of crease patterns is that it is difficult to use them to re-
create the design, since crease patterns show only where each crease must be made and not a step-by-step instruction. 
However, drawing diagrams is tedious and very time-consuming. We propose a method to autonomously generate the 
corresponding diagram for a crease pattern sequence. Each element of the sequence represent the state of the paper in a 
certain origami step. We construct a sequence of steps, also generating an animation to show the transition between steps, 
thus helping novice origamists.  
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1 Introduction

  The most common form to convey origami is through origami 

diagrams, which are step-by-step sequences, composed of 

figures that represent the state of the folded paper, in 

combination with lines and arrows indicating the position of the 

folds and the movement of the paper. An example of a typical 

origami step represented as a diagram can be seen in Figure 1a 

(second figure from left to right). It is usual for diagrams of an 

origami model to have a large number of drawings. For that 

reason, drawing diagrams is tedious and very time-consuming. 

  With the development of modern techniques of origami design, 

the range of achievable shapes increased drastically and the 

crease pattern (the pattern of creases left on the paper after 

folding an origami model) has gained importance as an efficient 

method of documenting origami pieces. Figure 2 shows an 

example of crease pattern (2a) and its folded form (2c). Several 

authors publish only crease patterns of their creations. However, 

the disadvantage of crease patterns is that it is difficult to use 

them to re-create the design, because they show only where each 

crease must be made and not a step-by-step instruction. There 

are two types of fold in origami; mountain folds and valley 

folds. The mountain fold produces a convex surface and is 

represented here as dashed red lines. The valley fold produces a 

concave surface and is represented here as solid blue lines. 

  We introduce a method to generate diagram notations from 

sequences of crease patterns of flat origami comparing the 

position of vertices and creases between two consecutive crease 

patterns, thereby providing a tool to accelerate origami 

documentation. Distortions can also be added to the drawings in 

order to clarify the layer arrangement of the origami. Our 

system provides 3D animation of simple steps, as an aid to those 

inexperienced in folding origami.  

2 Related Work 

  Modern origami diagrams have notations based on the system 

developed by the origami artist Akira Yoshizawa. Originally, 

they were hand written, but, gradually computer-aided origami 

diagramming became the standard way to represent origami 

instructions.  Although there are variations on diagramming 

symbols, diagrammers usually follow some standards [1].  

  The rendering of a flat origami from its crease pattern, which is 

a NP-complete problem, has been implemented by a software 

program called ORIPA [2], which uses brute force to determine 

the ordering of the layers. Our program uses this method to 

obtain the folded form of the crease pattern. A method for 

simulating rigid origami (origami in which the faces are made of 

a rigid material) was developed [3] by using affine 

transformations to map the movement of the faces, while the 

dihedral angles between the faces are calculated by using Euler 

integration to solve a system of differential equations for each 

vertex. The relationship between spherical geometry and the 

dihedral angles of an origami model with a single vertex was 

found to produce noncrossing motions [4]. 

3  Origami Diagrams 

 
(a) 

 
(b)                        (c) 

Fig. 1. Generation of origami notations. (a) Crease pattern and 

folded form for two consecutive steps. Folding arrows are 

obtained by comparing the position of vertices. (b) Removed 

creases will be marked with a push arrow. (c) Added creases 

will appear as fold lines. 

3.1 Diagrams` Notations 

  Origami diagrams notations are the arrows and lines showing 

where the folds must be performed as well as how the paper 

should move. In the diagram notation used in this work, the 

mountain folds are represented as dark red dot-dashed lines and 

the valley folds as black dashed lines.  

  By comparing the crease pattern of a step with the crease 

pattern of the subsequent step we can obtain a set of removed 

creases (creases present only in the current step) and a set of 

added creases (creases present only in the next step). An added 

crease should appear in the diagrams as a fold line and rendered 



 

just above the face in which it is embedded. The orientation and 

position of such fold will follow the affine transformation that 

controlling the position of the host face. A removed crease is 

marked in the diagrams with a push arrow. Push arrows are the 

white fat arrows that indicate push action used to unfold a 

certain crease while inverting the orientation of the faces 

divided by this crease. 

  We can also compare the position of vertices after the 

execution of the step. We denote the movement of the paper 

with a folding arrow (slim black arrow), as shown in Figure 1a. 

Our system will generate as many arrows as the number of 

moving vertices. If fewer arrows are desirable, the user can 

simply delete the unnecessary notation by editing the results. 

3.2 Distortions 

  Usually, diagrams have some distortions to show more clearly 

how the layers are disposed in the origami model [1]. If the 

result form of the model shown in Figure 2a were ideal, its 

rendering would show only a square (Figure 2b), and 

information about how many layers are piled up would be lost. 

To perform such distortions, we consider the layer ordering of 

the origami. The layer ordering is obtained using ORIPA 

methods, by brute force. Then, we can attribute a z-index to 

each face considering that successive faces that do not intercept 

in the x-y plane should have the same z-index. Each vertex must 

also have a z-index, calculated as the arithmetic mean of the z-

indexes of the faces that contain such vertex, and then adjusted 

to avoid self-penetrations (Figures 2d, 2e and 2f). After this 

adjustment, the position of the vertex is calculated using the 

following formula, in which  𝑝𝑣
∗ represents the distorted position 

of vertex 𝑣 , 𝑝𝑣  is the original position of vertex 𝑣 , 𝑝𝑜  is the 

vector representing the viewing direction, 𝑧𝑣  is the z-index of 

vertex 𝑣 and 𝑧𝑚𝑎𝑥 is the maximum z-index. 

𝑝𝑣
∗ = 𝑝𝑣 + 𝑝𝑜 ∙ 𝑧𝑣/𝑧𝑚𝑎𝑥     (1) 

 

  Figure 2c shows the result obtained by our system with 

distortions. The user, in order to generate different perspectives 

and show the desired layer configuration, can change the 

viewing direction and the amount of the distortion by inputting a 

different 𝑝𝑜.  

 
  (a)                    (b)                (c) 

 
(d)                      (e)                       (f) 

Fig. 2. (a) Crease pattern and its folded form: (b) ideally 

mathematical model and (c) distorted model. (d) Transverse 

section of an origami showing the layer z-index. (e) Vertex z-

index as the mean of faces z-indices. (f) Adjusted vertex z-index 

to avoid self-penetrations. 

4 3D Animation 

  We use the method described in [3] to determine the affine 
transformations that govern the movements of the origami faces. 
First, we determine the set of faces that will move by comparing 
the position of faces in two consecutive steps. Then, we can 
gradually vary the dihedral angles between the faces until their 
desired positions. Each face is considered to be rigid and the 
solution of the necessary condition for the angles (to maintain 
the continuity of the paper) is calculated using spherical 
geometry, in a process similar to the one described in [4].  
  The degree of freedom for the movement at a vertex is the 

number of moving faces minus two [3]. When the degree of 

freedom is less than one, our system allows deformations on the 

neighbour fixed faces in order to represent the movement 

preserving the continuity of paper. Figure 3 shows screenshots 

of an example of animation. 

  The animations can contain self-interceptions, since the 

conditions for angles are not sufficient to prevent collisions and 

some steps cannot be performed with the rigid origami approach. 

The results of the animation can also be exported to a 3D 

computer graphics software, so that the position of vertices can 

be edited in order to create more realistic animations or 

intermediate 3D steps for origami diagrams. 

 
Fig. 3. Generated 3D animation of an origami step. 

5 Conclusion 

  We presented a method to autonomously generate origami 

diagrams from crease pattern sequences. The crease pattern 

sequences can be obtained by a simplification method as 

described in [5], or manually created using ORIPA. The use of 

the output can decrease substantially the time spent to draw 

origami diagrams. The results are exported in a vector graphics 

file format, allowing easy alterations and adjustments to the 

desired notation. However, some notations are not generated by 

our method such as mountain fold arrows and, as this method is 

only applied to flat origami forms, the 3D intermediate steps 

that appear in some diagrams cannot be generated using ORIPA. 

To obtain such intermediate steps, the user can use screenshots 

of the 3D animation.  

  As future work, we plan to add support for more notation 

symbols and implement improvements in the distortions. In a 

symmetrical model, for example, there might be different 

vertices in the same position with the same z-index on the 

symmetry axis. These vertices’ distorted position will be the 

same, although they are usually represented slightly apart from 

each other in diagrams. Creating a dynamic 𝑝𝑜  pointing 

outwards from the symmetry line is a possible solution.  

  The z-index stacking of faces only work if there are no cycles 

in the stacking order of faces, which occurs when different 

regions of the same face requires different stacking order to be 

correctly rendered. The division of faces in smaller regions for 

the calculation of z-index and rendering is a way to produce 

correct representations for these models. 
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