

Non Binary LDPC with Cyclic Redundancy Check

Sekson Timakul
1
 and Somsak Choomchuay

2

1
College of Data Storage Innovation, King Mongkut’s Institute of Technology Ladkrabang,

Bangkok 10520, Thailand
2
 Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand

Abstract

This paper proposes an error correction technique for non binary LDPC code. The CRC is employed to detect each symbol
in a codeword. The sysmbol error posibility is adjusted in prior before decoding by fast fourier transform sum product algrithm.
This new technique yields improvement in BER performance.

Keywords - LDPC, CRC, Concatinate Code

1 Introduction

A Low Density Parity Check Code is a linear block code
which the parity check matrix H has a low density of non-zero
entries. These iterative decoding codes are defined in both
binary and non-binary symbol. The LDPC codes over the Galois
field of order q, are non-binary LDPC (NB-LDPC) codes which
are also known as q-ary LDPC. This class of code was first
investigated by Davey and MacKay in 1998 [1]. [1] has
extended the sum-product algorithm (SPA) for binary LDPC
codes to decode q-ary LDPC codes and referred to this
extension as the q-ary SPA (QSPA). Based on the fast Fourier
transform (FFT) algorithm, they devised an equivalent
realization called FFT-QSPA to reduce the computational
complexity of QSPA for coding with q as a power of 2 [2] [3]. It
is not guarantee that LDPC decoding is successful with a
predefined number of iteration, the remain information will be
discarded. In contrast the systematic codeword which the
messages are appended with parity, if message has no error bit
or the error bit occur only at the parity portion, we can recover
the message but we still need to verify the message whether it
correct or not. In order to prevent failure before using received
message, another classical technique, cyclic redundant check
(CRC), can also be applied to the message portion. [4] proposed
an alternative technique called CRC-LDPC and applied to
binary LDPC and decoded with Log-SPA. Messages are into
segments and CRC was applied to every segment of any
iteration in the process of LDPC decoding. After decoding, if the
check is found correct the we can fix the Log likelihood ratio of
LDPC. Therefore, the message segment will be fixed in the
decoding stage at hard decision process.

This paper proposes error correction by using CRC-LDPC
technique. However in contrast to [4], we have applied the CRC
to Non-binary LDPC and decoded with FFT-QSPA. CRC is
used to detect symbol’s correctness on received data. The fixed
symbol can improve the performance a subsequent LDPC
decoder.

2 Data packet

Consider a data packet to be transmitted through a MRC,
which is encoded sequentially by the CRC and a systematic
LDPC encoder.

Fig.1. Data packet

Figure 1 depicts the implementation of multiple CRCs in
an encoded codeword in comparison to that of the single CRC
construction. We note that for the purpose of detecting the
packet error, the CRC code should be placed in the systematic
part of the packet.

3 FFT-SPA LDPC decoder

A generalized sum-product algorithm (SPA) for decoding
Q-ary LDPC codes called the Q-array SPA (QSPA) can reduce
decoding complexity based on fast Fourier transforms (FFT).
The combined procedure is so called FFT-QSPA. Although the
FFT-QSPA reduces the computational complexity, it has
introduced another quite complicated operation such as
permutation that relates to multiplications over GF. The FFT-
SPA LDPC process is summarized in the following steps [6];

Initial Step: Quantities are initialized to

Horizontal Step:

Vertical Step:

Tentative decoding:

Syndrome check:

4 CRC detector

CRC (Cyclic redundancy check) is often used to detect data
transmission errors. Parities are transmitted together with the
data and evaluated independently at the receiver side. If
evaluated and received CRCs are different, data transmission
error is indicated. If both CRCs are the same, there still exists
other data provided the same CRC. Nevertheless the probability

1

'

' /

() (())
m

mn mn

n N n

r x F F q x

'

' /

() (),
n

x

mn mn n m n

m M m

q x f r x

'

' \

1

()
n

mn x

n m n

x m M m

f r x

ˆ arg max ().
n

x

n n n mn
x

m N

c f r x

Message ParityCRC

CRC
Sym

1
CRC

Sym

2
CRC

Sym

n
…………………..

ˆ 0Hc

(1)

(2)

(3)

(4)

(5)

of such an error is usually very low. The possibility that CRC
undetected error is shown below.

Where m is data frame length and n is generating polynomial

degree. The number of data frames with the same CRC from 1

correct (transmitted) is 2m n and erroneous is 2 1m n . The
number of all frames of length m, from 1 correct (transmitted) is

2m and erroneous is 2 1m .

4.1 Experiment Setup

In the experiments, we examined the LDPC at GF(16) and
GF(256). We defined 41 x x as a primitive polynomial and

2 3 4 81 x x x x for parity check matrix H. In GF (256) we
defined N = 128 and K = 64. The calculated code rate is 0.5
which is one of a short block length code that widely used in
data space system [5]. In GF(256) we also set N=16, and K=8.
In GF(16) we set N=32, K=16. LDPC is a regular (2,4) one with
2 elements in vertical of H, and 4 element in the horizontal. As a
generator matrix G is set to [P | I], the obtained codeword is
systematic. CRC size is set to be the same as symbol size. With
this condition, the detect symbol can be computed with (6). As
such CRC-4 is employed for LDPC of GF(16) and CRC-8 is for
LDPC of GF(256) respectively. Without losing the meaning, the
message can be viewed in binary format after encoding.
Subsequently, the message is encoded with CRC before sending
through AWGN channel.

At the receiver, the message may be inferred with noise;
however the error may not happen at the entire symbol. CRC
decoder evaluates the valid symbol, and then it marks as
possibility bit as 0 or 1. This binary possibility bit is the
converted to symbol of 0 or 1 that presents position; value 0
means lowest possibility and value 1 means highest possibility.
With this information, the LDPC decoder can know whether it
should or shouldn’t change the value of that symbol. Respected
to FFT-SPA, non-binary LDPC decoder, we compared LDPC
codes with and without CRC by setting maximum iteration of
20. However we ignore CRC decoder when the symbol matches
the codeword. We did this to save the simulation time since the
trend of LDPC+CRC performance is that what we want. Be
noted that adding CRC will cause the message size to be double,
but the obtained code rate still remain the same.

4.2 Simulation Results

The obtained result is shown in Figure 2 where the bit error
rate (BER) performance is illustrated. LDPC+CRC provides
better performance compared with LDPC alone. By fixing
possibility, a LDPC need to work only the position that marked
as invalid symbol. Obviously the effort has improved the code’s
performance. At SNR equals 1 dB LDPC(GF16)+CRC obtains
better performance when compared with LDPC(GF256)+CRC.
This is because the size of symbol of GF(16) is smaller, then the
possibility of error is lower accordingly. However at higher
SNR, the performance of LDPC(GF256)+CRC is improved due
to the noise in the system is reduced.

Fig.2. Bit error rate performance

5 Conclusion

Regarding the result as shown in the previous section, by
adding CRC into LDPC, the performance can be improved.
However, the experiments are based on assumption that there is
no noise interference in CRC portion. If the encoded symbol has
only one error bit but at every symbol, the result is similar to
that of LDPC without. Moreover, by fixing possibility value at
decoding process, it likely to be a fault detection if CRC unable
to detect the error.

To mitigate this issue, it is necessary to extend data size to
be the same as redundant size. This can cause the message size
to be doubled and the code rate is reduced as describe by (6). To
employ CRC encoding at message portion only, it may not
worthwhile for practical use. Fixing possibility may be both
detection and correction of erroneous is made possible. With
this choice, the deployment of BCH code may be a good option.
The application may be not restrict to a small block, but larger
block can be divided it into many small segments. However the
appropriate size must be investigated. The tradeoff between
increasing of block size and reducing of code rate must be
considered for a good balance.

References

[1] M. Davey and D. MacKay, "Low density parity check codes over

GF (q)," Information Theory Workshop, 1998, pp. 70-71, 1998.

[2] L. Barnault and D. Declercq, "Fast Decoding Algorithm for LDPC

over GF (2q)," The Proc. 2003 Inform.Theory Workshop, pp. 70–

73, 2003.

[3] H. Song and J. R. Cruz, “Reduced-complexity decoding of q-ary

LDPC codes for magnetic recording,” IEEE Trans. Magn., vol. 39,

no. 2, pp. 1081–1087, 2003.

[4] Yeong-Hyeon Kwon, Mi-Kyung Oh, Dong-Jo Park, ”A new

LDPC decoding algorithm aided by segmented cyclic redundancy

checks for magnetic recording channels,” IEEE Transactions on

Magnetics, vol.41, pp 2318-2320, 2005.

[5] Draft Recommendation for Space Data System Standards,

“SHORT BLOCKLENGTH LDPC CODES FOR TC

SYNCHRONIZATION AND CHANNEL CODING”, 2012.

[6] Rolando Antonio Carrasco and Martin Johnston, “Non-Binary

Error Control Coding For Wireless Communication And Data

Storage”, John Willey & Sons, Ltd., pp. 201-235, 2008.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Bit Error Rate

Eb/No (dB)

B
E

R

Uncoded

GF(256) N=16

GF(16) N=32

GF(256)+CRC N=64

GF(16)+CRC N=32

2 1

2 1

m n

ch m
P

(6)

