

Development of a Block-Structured AMR Module

A. Nagara 1, M. Nunami 2, M. Matsumoto 1,and H. usui 1

1
 Graduate School of System Informatics, Kobe University, Japan

2
National Instutite for Fusion Science, Japan

1 Introduction

The aim of this work is the development of a high-resolution

and high-efficiency module applicable to various numerical

simulations. Despite the increasing computational power, lack

of numerical resolution is a persistent problem in a simulation

studies.

To solve this problem, we adopted adaptive mesh refinement

(AMR) which realizes both high-resolution and high-efficiency

in a simulation [1,2]. AMR technique can provide efficient

numerical calculation by adapting grids to regions where higher

numerical resolution is required. However, it is difficult to

implement the AMR technique in a conventional simulation

code. The development of a portable AMR framework will

contribute to the high performance of various numerical

simulations.

2 Design of AMR module

We adopted block-structured AMR [2,4], in consideration of

portability. The module has two point for portability.

2.1 AMR-type

The module is based on self-similar block-structured AMR,

with fully threaded tree data structure (FTT) allowing recursive

grid refinements on a block-by-block basis[5]. In each block,

uniform grid code is applicable because of block-structure, and

it is possible to calculate with same size grid system for each

refinement levels because of self-similar structure. (Fig.1)

Fig.1 Self-similar block-structure AMR

Each block has information about level of refined hierarchy

and physical variable. Every block has three kinds of pointers

which imply neighbor, child, and parent blocks. Relationship of

each block is built by pointers. Each block is treated as

independent unit organized in refinement tree.

2.2 Proccessing flow

 The module is designed to isolate calculation in a block from

AMR process. Because of the isolation, application of a uniform

grid code needs to change only the calculation in each block.

(Fig.2)

Fig.2 Processing flow of one step calculation

Due to the isolation, processing flow contains the overhead.

Calculating the internal arrays of each block, the module needs

the three processes. First, in each block, the contents of the

internal arrays are copied to temporary arrays for smooth

calculation. Second, by calling the uniform grid code which is

introduced to the module, physical values in temporary arrays

are calculated. Finally, the updated values in the temporary

arrays are copied to the internal arrays of the original code. At

the cost of partial efficiency, the module pursues the portable

framework.

3 Example of AMR module incorporation

 To demonstrate the effectiveness of the module, we applied

the module to simple 1D/2D advection equation.

3.1 High-resolution by AMR module

In this test case, the module creates one subdivision block.

With the introduction of this module, advection equation should

be calculated with double accuracy. High-resolution advection

calculation is confirmed by comparison between cases of AMR

and uniformed grid (Fig.3). Figure 3 shows calculation results of

1D upwind-difference-scheme(UDS) calculated by the AMR

module and uniform grid code. The vertical axis shows the

physical quantity, and the horizontal axis shows the position in

fig.3. This graph indicates that regions where physical quantities

has large gradient are refined by AMR technique. It was shown

that using the AMR module can provide high resolution

calculation.

3.2 High-efficiency by AMR module

Measurement of computing time shows that the application is

high-efficiency module compared to uniform grid codes (Fig.4).

Figure 4 shows the comparison of computing time for 2D UDS

calculated by the AMR module and uniformed grid code. The

vertical axis shows the conputing time, and the horizontal axis

shows the size of simulation field in fig.4. In all cases , the

initial condition is common and only the size of simulation field

is different. Physical quantities were calcurated with the same

accuracy. The increase rates of computing time suggest that

calculation of 2D UDS using the AMR module is faster than

calculation by uniform grid code. When the simulation region

become large, the result by the module is become efficient.

Fig.3 Comparison of 1D AMR and 1D uniform grid code

Fig.4 Computing time for 2D UDS

Comparison of memory usage has a same tendency of

comparison of calculating time; calculation by the module needs

lower memory usage than calculation by uniform grid code

when the simulation region is large. The module makes for

efficiency of calculation. In the case of small simulation region,

however, computing time and memory usage using the module

are about the same as these using uniform grid codes.

 In order to calculate efficiently even if the calculation region

is small, it is necessary to reduce the overhead of blocking. We

should explore more efficient method of blocking without

sacrificing the portability.

4 Conclusion

The AMR module developed in this work is effective to

improve the accuracy , and allows for the efficient computation

to some extent. Considering the overhead of the module, more

efficient blocking method depending on introduced calculation

is required. Even when simulation size is small, we should make

the module calculate more efficient.

In terms of portability, we have introduced only a few

calculation examples, so it is necessary to try to introduce the

various calculations. For the future, the module will be used in

several simulation code, MHD code, Gyrokinetic Vlasov code,

and Particle code. Evaluation of portability will be appreciated

soon after.

The module has function of only one step subdivision and

does not adapted to parallelization. In order to apply to large-

scale calculations, we consider that the contents of the following

development are parallelization, n-step subdivision and more

efficiency blocking technique.

References

[1] Darren De Zeeuw and Kenneth G.Powell, “An adaptively refined

Cartesian mesh solver for the euler equations.” J.Comput.Phys.

104:56-68,1993

[2] J. J. Berger and J. Oliger. “Adaptive mesh refinement for

hyperbolic partial differential equations.” J.Comput.Phys. 53:484-

512,1984.

[3] A. V. Kravtsov, A. A. Klypin, A. M. Khokhlov, “Adaptive

refinement tree—A new high-resolution N-Body code for

cosmological simulations” Ap. J. Suppl., 111 p. 73, 1997

[4] M.L. Norman and G.L. Bryan. “Cosmological adaptive mesh

refinement. “astro-ph./9807121, July 1998.

[5] A. M. Khokhlov. “Fully Threaded Tree Algorithms for Adaptive

Refinement Fluid Dynamics Simulations.” J.Comput.Phys.

143:519-543,1998

