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1 INTRODUCTION

Flows in a precessing cavity such as a sphere, spheroid

and cylinder have been studied extensively since the

seminal laboratory experiment by Malkus (1968) and

the analytical theory by Busse (1968). However, de-

spite of the simple motion of cavity, flows in a precess-

ing cavity are too complex to be fully understood on

the basis of analytical theories or experiments. Hence,

numerical simulations have been playing an important

role to investigate characteristics of flows in a precessing

cavity.

Recently, the numerical simulation by Kida and

Shimizu [1] discovered a turbulent ring in a precessing

sphere, along which strong vorticity as well as mag-

netic flux are generated. Recall that quite a few geo-

physicists are interested in the dynamo action in the

precessing cavity, since the spin axis of the Earth is

precessing slowly. In the present study, we investigate

flow structures at lower Reynolds numbers and reveal

the mechanism to create the ring.

2 GOVERNING EQUATIONS

We consider the MHD dynamo driven by incompres-

sive flows in a precessing sphere with the magnitude

of the spin and precession angular velocities being con-

stant in time and two axes being orthogonal. The evolu-

tion equations in the sphere for the fluid velocity u(r, t)

and the magnetic flux density b(r, t) may be written in

the precession frame (x, y, z) which is rotating with the

precession angular velocity Ωp = Ωpẑ as

∇ · u = 0, ∇ · b = 0,

∂u

∂t
= u× (∇× u)− 2Γ ẑ × u

−∇P − b× (∇× b) +
1

Re
∇2u,

∂b

∂t
= ∇× (u× b) +

1

Rem
∇2b,

where P is the modified pressure including the centrifu-

gal force potential, Γ = Ωp/Ωs the Poincare number,

Re = a2Ωs/ν the Reynolds number, Rem = a2Ωsµσ

the Magnetic Reynolds number, Ωs the spin angular

velocity taken in the x direction, a the sphere radius,

ν the kinematic viscosity, µ the magnetic permeability

and σ the electrical conductivity of fluid. The length

has been normalized by a, the time by 1/Ωs, and the

magnetic flux density by
√
ρµaΩs. The outside of the

sphere is assumed to be vacuum, where the magnetic

flux density b(o) obeys ∇ · b(o) = 0 and ∇ × b(o) = 0.

These equations are supplemented by (on r = 1),

u = x̂× r, b = b(o) (on r = 1)

which are the boundary conditions derived from the as-

sumptions that the flow is non-slip on the boundary

and that the magnetic permeability of the fluid is equal

to that of vacuum. We also assume that b(o) is zero

at infinity. Here note that the control parameters of

this system are the Poincare number Γ , the Reynolds

number Re and the Magnetic Reynolds number Rem.

3 NUMERICAL METHOD

We solve the above set of equations numerically by

spectral method. The velocity and magnetic fields are

expressed by the toroidal and poroidal scalar functions

U , W , B and J as u = ∇ × (∇ × rU) +∇ × rW and

b = ∇ × (∇ × rB) + ∇ × rJ . These scalar functions

are expanded by the Zernike spherical polynomials and

spherical harmonics; for example,

U(r, t) =

M∑
m=−M

L∑
l=|m|

N∑
n=|l|

n+l=even

Unlm(t)Φl
n(r)Y

m
l (ϕ, θ)

where Φl
n(r) is the Zernike polynomial and Y m

l (ϕ, θ)

is the spherical harmonics, (M,L,N) is the number of

truncation modes, and (r, θ, ϕ) is the spherical polar co-

ordinate with θ being the polar angle from the z-axis

and ϕ the azimuthal angle from the x-axis. The evolu-

tion equations for the expansion coefficients Unlm and

the corresponding ones for W , B and J are derived

and integrated numerically by the Adams-Bashforth

and Crank-Nicolson schemes. We use (M,L,N) =

(63, 63, 126)

4 RESULTS

Flow states are shown by symbols in figure 1 for the

simulated combinations of Re and Rem. Here we fix

Γ = 0.1, since it has been experimentally shown that

the flow becomes unsteady at relatively low Re when



the Poincare number Γ is around 0.1.[2] It is interest-

ing to observe that in all the cases of these simulation

parameters there exists a high speed stream running

approximately along the equator, and that the bound-

ary layer near the wall is swelled into the interior along

the ring. This high speed ring is shown in figure 2

by plotting high vorticity regions for a laminar case at

Re=1500 and a turbulent case at Re = 10000. These

rings are inclined slightly from the spin axis, and the

angle of inclination seems independent of the Reynolds

number. The axially averaged velocity, ⟨u⟩ϕ, is shown

in the right panel of figure 3 for Re = 1500. Note that

this velocity field seems quite similar to that of spin-up.

Although it is difficult, due to the nonlinearity, to de-

scribe analytically this velocity field, the formation of

the ring structure may be understood qualitatively as

follows. Because the spin axis rotates about the pre-

cessing axis, fluid inside the sphere continuously tries

to approach the solid-body rotation which is suitable

to the boundary condition at the instance, but which

is never established. It takes the duration of the order

of 1/Ωs to form the boundary layer and to start the

spin-up. During this period, the ring with high angular

velocity inclines at an angle of the order Ωp/Ωs = Γ . It

becomes unstable as Re number increases and the tur-

bulent regions with high-activity of vorticity and mag-

netic flux are created along it.

Fig. 1: Flow states at Γ = 0.1.

Fig. 2: Ring structure. The region of large vorticity

is shown by iso-surface. Left : Re = 1500. Right : Re =

10000.
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Fig. 3: Spin-up. Left : Velocity field during spin-up

from rest at Re ∼ 5000. Right : Axial averaged velocity

at Re = 1500 and 　 Rem = 8000. In-plane compo-

nents are represented by allows and the perpendicular

component by gray scale.

5 CONCLUSION

Solving the MHD equations by the spectral method,

we have conducted highly precise numerical simulations

of fluid motions and MHD dynamos in a precessing

sphere. In our simulations for the Poincare number

fixed at 0.1, a ring-like high-speed stream is always ob-

served irrespective of the Reynolds numbers. At higher

Reynolds numbers, turbulent vortical structures and

magnetic flux are produced along the ring (see the right

panel of figure 2), whereas this ring is also observed in

laminar flows at lower Reynolds numbers (see the left

panel of figure 2). These observations suggest that such

a laminar solution is likely to be embedded in the tur-

bulence, and may well be key ingredients to understand

the mechanism to sustain the strong turbulence and the

MHD dynamo. In addition, it has been shown, in the

present study, that the ring-like structure is created by

a continuous spin-up process.
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