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1 Introduction

It is well known that in the high Reynolds number tur-
bulence there exist thin tube-like vortical structures whose
radii are order of the Kolmogorov length scale. Direct nu-
merical simulations have been successful in revealing their
various features (see e.g. Ishihara et al.[1]). Although
statistics of turbulence is extensively investigated, there
are less works on the geometry and dynamics of the vor-
tical structures. Moisy and Jiménez[2] characterized the
geometry and spatial distribution of high-vorticity regions
by means of box-counting methods. Bermejo-Moreno et
al.[3] extracted structures of high enstrophy and charac-
terized them by geometrical analysis; distribution of blob-
like, tube-like and sheet-like structures was studied in some
detail. The results so far, however, are mostly based on
either instantaneous or averaged fields. The dynamics or
temporal evolution of the fine-scale vortical structures re-
mains unexplored.

In this paper we study the dynamics of high-enstrophy
structures in isotropic turbulence by 4D visualization and
geometric analysis. Our aim is to understand the temporal
evolution of vortical structures in turbulence and thereby
elucidate the interaction of vortical structures, which in-
cludes deformation, reconnection, merging and cancella-
tion; these should play an important role in the cascade
process of turbulence. We are particularly interested in the
dynamical equilibrium of the fine-scale vortical structures,
which is closely related with the statistical properties tur-
bulence and would be helpful in improving the accuracy of
turbulence models.

2 4D visualization

The numerical method is essentially the same with Ishi-
hara et al.[4]. The three-dimensional Navier-Stokes equa-
tions are solved by Fourier spectral method. The total
number of modes is N3 = 10243. The microscale Reynolds
number is Reλ ≈ 358, while the Kolmogorov length is
kmaxη ≈ 1.59 where kmax = 483 ≈

√
2N/3 is the maxi-

mum wavenumber.

The DNS data are visualized by Realization WorkSpace
(RWS) of the Advanced Fluid Information Research Cen-
ter (AFIRC), Institute of Fluid Science, Tohoku Univer-
sity. RWS is a virtual reality system for three-dimensional
visualization (Fig. 1); the screen extends both in front and
on the floor with total size of 4.5[m]×4.0[m]. The large
disk space of AFIRC allows us to store a sufficient number
of data for animation of the three-dimensional field (4D
visualization). In the present study we choose an isosur-
face of the magnitude of vorticity for the three-dimensional

field. The 4D visualization has shown various ways of in-
teraction of the tube-like vortical structures: deformation,
reconnection, merging, cancellation etc. This led us to in-
vestigate the temporal evolution of the tube-like vortical
structures, which are called high-enstrophy structures in
the following to make it clear that vortical structures with
small magnitude of vorticity are excluded.

3 Analysis of high-enstrophy structures

In order to study the temporal evolution of vortical
structures in turbulence, we introduce a simple definition
of high-enstrophy structures. First we choose a threshold
ωc for the magnitude of vorticity. Two grid points are said
to be neighbors if the distance between them is smaller
than 2∆x, where ∆x = 2π/N is the grid spacing. Two
grid points are regarded as connected if there is a sequence
of neighbors between them. Then a set of connected grid
points S is called a high-enstrophy structure if ω(xxx) > ωc

for all xxx ∈ S. There are a few disadvantages due to the
simplicity of the definition. For instance, there are many
tiny structures consisting of a few points; one third of the
structures have points less than 10. The above simple def-
inition, however, is preferred for the present purpose since
it is not time-consuming for temporal analysis.

As a first step toward studying the temporal evolution
we show some basic properties of high-enstrophy structures
in an instantaneous field of isotropic turbulence. Figure 2
shows the volume fraction of the largest high-enstrophy
structure, or in other words, the maximum volume of the
structures divided by the total volume of the structures
for ωc. Here the volume is defined by the number n of
points in the structure multiplied by the volume of unit
cell (∆x)3. For small ωc the largest structure occupies al-
most the whole region of ω > ωc; in other words the whole
region ω > ωc is almost connected. A transition is ob-
served between 1 < ωc/ω < 3. For large ωc the volume
fraction is close to zero, which implies that we can iden-
tify disconnected high-enstrophy structures. Also shown
in Fig. 2 is the number of high-enstrophy structures. It
takes maximum around ωc/ω = 1.8, for which the volume
fraction is 0.78, a rather large value. In the following we
set ωc/ω = 3.

Figure 3 shows examples of high-enstrophy structures
obtained by the present method. There are a number of
tube-like structures like the one shown in left. However,
some are combination of such tube-like structures which
are interacting as shown in right.

Relation between the volume and area of the high-
enstrophy structures is shown by scatter plot in Figure
4. The area is approximately proportional to the number



Fig. 1. 4D visualization in Realization WorkSpace.
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Fig. 2. Volume fraction of maximum high-enstrophy struc-
ture (+, left axis) and number of high-enstrophy structures
(×, right axis).

ns of surface points of the structure, where a point in S is
called a surface point of S if at least one of the adjacent
points is out of S. Although the data points are widely
spread, we observe a crude scaling law ns/n ∝ n−1/6. If
we apply this scaling to cylindrical tubes, the radius and
the length scale as n1/6 and n2/3, respectively. The value
of the radius is estimated as r ∼ 2(n/ns)

1/2∆x, the max-
imum of which is ∼ 3∆x. The length is also estimated as
l ∼ ns∆x/(4π) ∼ 102∆x for ns ∼ 103. These values are
consistent with thin tube-like vortical structures although
not all of the high-enstrophy structures are tube-like.

4 Conclusion

The high-enstrophy structures in isotropic turbulence
are investigated by 4D visualization using a virtual real-
ity system. As a step toward studying in detail the dy-
namics of the high-enstrophy structures geometrical anal-
ysis of an instantaneous field is performed. Our simple
definitions are successfully applied to identify the high-
enstrophy structures and their surfaces. Temporal evolu-
tion and interaction of the structures are currently inves-
tigated and the results will be reported in the conference.

Fig. 3. Examples of high-enstrophy structure.
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Fig. 4. Scatter plot of n and ns/n.
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