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1 Introduction

A prevention of prevalence of infectious diseases is one
of important problems in epidemiology. In the past, the
public health system has prepared for some strategies such
as antibiotics and vaccines to control the infectious disease
development. In order to build up more effective strate-
gies, we need a precise theoretical analysis of infectious
diseases. From a theoretical viewpoint, the mathematical
model which describes the spread of the infectious disease
has a very important role. In this paper, we study the
stochastic modeling of the infectious disease in populations
consisting of four populations: susceptible, infected, recov-
ered and vaccinated ones. First, we propose the stochastic
infectious model with vaccination in Section 2. In Sec-
tion 3, we construct the optimal vaccination strategy for
the stochastic infectious model using the stochastic max-
imum principle and the 4-step scheme. Finally, we show
the efficiency of the optimal vaccination strategy by the
numerical simulations in Section 4.

2 Stochastic Infectious Model with Vaccination

Denoting the ratio of the population size of susceptible
(individuals susceptible to the disease), infected, recov-
ered and vaccinated to the total population at time ¢ be
S(t),I(t), R(t) and V(t), consider the interaction between
each population as shown in Fig. 1.
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Fig. 1. Interaction between each population [1]

In Fig. 1, 0 presents the transmission rate, p the death
rate(= the birth rate), v the recovery rate, v the rate of
loss of immunity, u the vaccination rate, ¢ the rate of
vaccination waning. A vaccination efficacy is denoted by
1— o with o € [0,1].

Noting that the real infectious disease contains some
kinds of random fluctuations caused by changes in the en-
vironment, we consider the rate of loss of immunity with
a random fluctuation. We replace the rate of loss of im-
munity v by

v — v +en(t), (1)

where the parameter ¢ is a constant and 7n(¢) denotes the
Gaussian white noise with zero mean and unit covariance.

Using the relation between the Gaussian white noise n(t)
and the Wiener process w(t) such that dw(t) = n(t)dt, we
have the stochastic infectious model with vaccination:

dS(t) = {n— (p+u®)SE) — BSHI(t) + ¢V (t)

+vR(t)}dt + eR(t)dw(t), (2)
dI(t) ={BSW)I(t) + oBV()I(t) — (n+)I(t)}dt,  (3)
dR(t) = {vI(t) = (u+ v)R(t) }dt — eR(t)dw(t), (4)
dV(t) = {u(t)S(t) — (n+ @)V () — oSV (1)I(t)}dt,  (5)
with the initial conditions

S(0) = So, 1(0) = Io, R(0) = Ro, V(0) = Vo. (6)

Since the death occurs with the same rate p as the birth
rate, we have

S(t) + I(t) + R(t) + V(t) = 1. (7)

3 Stochastic Optimal Vaccination Strategy

First, we consider the cost function J(u) such that

Ju)=FE {/ é(x(t),u(t))dt} , (8)

where ¢ : R® x R! — R! and is assumed to be continuously
differentiable.

Then, we study the optimal control problem of finding
the optimal vaccination rate u* € U such that

J(u") < J(w),"u €U, (9)
where U is an admissible control set defined by
U={u0 <u(t)<Cp,"te®=(0,T)},  (10)

and where Cp, € (0 1] is a constant.
For simplicity of descriptions, we define the vector:

a(t) = [1 (1) @2(t) ea(t)) = [S(8) I(t) R@). (1)
We introduce the Hamiltonian H in such a way that

H(z,u,p,q) = (f(z,u),p) — £(z,u) + (9(x), 0),

where (-, -) denotes a Euclidean inner product, p and g are
adjoint vectors, f and g are vectors with components:

(12)

fi=p—px1 — Brize —uxs + dv + vas, (13)

J2 = Brizat+oBurs—(put+y)w2, f3 = yr2—(ptv)zs, (14)

g1 =€x3, g2 =0, g3 = —cxs. (15)

23:1 :rj)'

and where v = (1 —



Then, the stochastic maximum principle [2] yields that

do” = H(z", u",p,q)pdt + g(x")dw(t), 27(0) = zo, (16)

dp=—H(z",u",p,q)edt + q(t)dw(t), p(T)=0. (17)
H(z",u",p,q) = malfH(m*,u,p, q9), (18)
ue

where z*(t) is an optimal trajectory of x(¢).
We solve the forward-backward stochastic differential
equations (16) and (17) using the four-step scheme [3].
Assume that p(t) and z(t) are related by

p(t) = 0(t, 2" (1)),

where 0 is some vector-valued function with components
0'(t,z*(t)) (i = 1,2,3) to be determined.

In the sequel, the asterisks of z(t) and u(¢) are omitted
for simplicity of descriptions.

Using the It&’s lemma to 6%(t,z(t)), we have for i =
1,2,3,

(19)

40" = {0} + (65, £) + S01(64).g0/ 11t + (65, g) duw. (20)

Noting that p(t) = 6(¢, z(t)) and u is a function of p, g and
z, it follows from Eqgs. (17) and (20) that

7 i 1 i/ /
0r + (05, ) + Stel(02)299 ] + H(2,0,9)0; =0. (21)

with the terminal condition
0'(T,z) =0, (i=1,2,3). (23)

Since Eq. (21) is a deterministic partial differential equa-
tion, we can solve Eq. (21) with Eq. (22) under the ter-
minal condition (23).

4 Simulations

For simplicity of numerical calculations, we assume that
the vaccination has a complete efficiency and recovered
does not become reinfected and the vaccinated is included
in recovered, i.e., v = 0 = ¢ = 0. We consider the random
fluctuation in the infection rate (. Setting as 8 — B +
en(t), we have

dS ={p— (n+u)S — BSI}dt — eSIdw(t), (24)
dl = {BSI — (u+ v)I}dt + eSIdw(t), (25)
dR = {~vI + uS — pR}dt. (26)

Numerical simulations are performed under the parameter
values: So = 0.60, Ip = 0.20,8 = 0.0024, . = 1/73.5,T =
30,7 = 1/6570,e = 0.05,m = 2.0,n = 2.0,7r = 0.8,C, =
0.7.
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Fig. 2. Optimal Trajectory of Each Population Density
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Fig. 3. Trajectory of Each Population Density under No
Vaccination
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Fig. 4. Time Evolution of Optimal Vaccination Rate

Figures 2 and 3 show the trajectory of each popula-
tion density under the optimal vaccination strategy and
no vaccination. Figure 4 is the trajectory of the optimal
vaccination rate u* (¢). From Figs. 2 and 3, by the optimal
vaccination strategy, we can see that the infected and the
susceptible are decreasing and the recovered is increasing.
From Fig. 4, we can know at what rate we will vacci-
nate. Comparing Fig. 2 with Fig. 3, trajectories under
no vaccination have been more significantly impacted by
the noise than ones under vaccination because the noise is
proportional to S(¢)I(t) as shown in Egs. (24) and (25).

5 Conclusions

In this paper, we have considered the stochastic mod-
eling of the infectious disease spreading under vaccination
and have studied the stochastic optimal vaccination prob-
lem. In the stochastic optimal vaccination problem, we
derived the feasible optimal vaccination strategy using the
stochastic maximum principle and the four-step scheme.
In numerical simulations, for the restriction of numerical
calculations, we have considered the optimal control prob-
lem of the stochastic SIR model with vaccination. Results
of numerical simulations have shown that our optimal vac-
cination strategy is effective. From simulation results ob-
tained in this paper, we can know how much vaccination
coverage is required in order to control the infectious dis-
ease with restricted vaccination rate.
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