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1 Introduction 
Turbulent transport is one of the most important issues in 

magnetically-confined plasma researches. Pressure gradients 
of confined plasma destabilize micro-instabilities, and the 
destabilized micro-fluctuations drive plasma turbulence via 
nonlinear coupling between perturbations of electric potential 
and plasma distribution function. The plasma turbulence 
causes particle and heat transport perpendicular to magnetic 
fields and degrades confinement. Typical wavelengths of the 
plasma turbulence are of the order of gyroradii of charged 
particles, while its time scales are slower than gyrations. 

To treat plasma turbulence, the gyrokinetic theory has 
been developed. The equations describe time evolution of 
gyrophase-averaged distribution functions and electric 
potential with retaining finite gyroradius effects. A lot of 
numerical simulations based on the gyrokinetic equations has 
been carried out and have contributed to understandings of 
plasma turbulence[1]. The development of numerical 
techniques for gyrokinetic simulations has continued to 
improve their applicability, accuracy and efficiency. 

Gyrokinetic simulations require expensive computational 
resources, since they have to solve time evolution in five-
dimensional phase space. We have investigated ion-scale 
plasma turbulence by using our gyrokinetic simulation code 
GKV[2] on tera-scale supercomputers. Plasma turbulence, 
however, is originally multi-scale physics, which includes 
temporal and spatial scales of electrons and ions. Problem 
sizes for resolving the multi-scale turbulence are 1836 
(corresponding to the ion-to-electron mass ratio) times larger 
than that of ion-scale turbulence. To deal with this 
numerically challenging problem, we have to develop 
numerical methods for applying the GKV code to peta-scale 
computing. 

 

2 The GKV code 
The GKV code is originally developed to investigate ion-

temperature-gradient-driven turbulence with the adiabatic 
electron approximation.  Extensions of the code for treating 
both of kinetic ions and electrons are in progress. Since the 
employed numerical algorithms are principally the same, we 
treat gyrokinetic equations with the adiabatic electron 
approximation in the following manuscript. 

2.1 Governing equations 
The GKV code solves the so-called δf gyrokinetic 

equations, where the distribution function is split into the 
equilibrium part FM and the perturbed part δf. Then the time 
evolution of the gyrophase-averaged perturbed ion 
distribution function 𝛿𝑓̅i�𝒓,𝑣||,𝜇; 𝑡�  is described by the 
gyrokinetic Vlasov equation, 
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where v||, vd and vE are the velocity parallel to the 
confinement magnetic field, the perpendicular magnetic drift 
velocity and the perpendicular E×B drift velocity due to 
electric potential perturbations. The term with the magnetic 
moment µ and the ion mass mi represents parallel acceleration 
by the mirror force. The linear term associated with the 
equilibrium distribution S contains contributions of the 
parallel electric field and equilibrium pressure gradients, 
which drive micro-instabilities and plasma turbulence. The 
model collision operator C is friction and diffusion operators 
in velocity space (v||, µ). The perturbed electric potential φ is 
given by the gyrokinetic quasi-neutrality equation with the 
elementary electric charge e and the ion equilibrium 
temperature Ti, 
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where 𝜙�  is the gyrophase-averaged potential. It should be 
noted that the velocity space integral must be taken holding 
particle (not gyrocenter) position fixed. The perturbed 
electron density ne is assumed to be 
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where 〈⋯ 〉 denotes the flux surface average. 

2.2 Simulation domain and boundary conditions 
In the δf framework, it is assumed that a steady 

equilibrium exists and satisfies the MHD equilibrium 
condition. Then, we can employ magnetic coordinates as 
configuration space coordinates r = (x, y, z), where the 
equilibrium magnetic field is described as 

𝑩 = 𝐵0∇𝑥× ∇𝑦 =
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Fig. 1. An example of the flux-tube simulation domain 
is plotted by black lines. Green lines represent a circular 
toroidal flux surface. 



 

The flux-surface label x, the field-line label y and the field-
aligned coordinate z correspond to the toroidal coordinates (r, 
θ, ζ) as x = r - r0, y = r0(qθ - ζ)/q0, z = θ in a large-aspect-ratio 
tokamak with concentric circular magnetic flux surfaces, 
where q is the so-called safety factor and the quantities with 
subscript 0 denotes the value at the center of  the simulation 
domain. While plasma turbulence has short perpendicular 
wavelength, its structure elongates in the direction parallel to 
the magnetic field. Therefore, a long and thin simulation 
domain along magnetic field lines is suitable for capturing the 
nature of plasma turbulence with reducing computational 
costs. An example of this flux-tube simulation domain is 
shown in Fig. 1, which is written by the projection of a box 
with short lengths in x and y and a long length in z. The flux-
tube model is widely used to analyse turbulent transport in the 
local approximation limit, where the equilibrium quantities 
are given by local values. 

We assume statistically periodic boundary conditions in x 
and y and apply the Fourier decomposition as 
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Additionally, there is the physical periodicity in the poloidal 
angle θ as φ(r, θ, ζ) = φ(r, θ+2π, ζ). This leads the modified 
periodic boundary condition along the field-aligned 
coordinate z, 

𝜙𝑘𝑥,𝑘𝑦(𝑧) = Θ𝜙𝑘𝑥+Δ,𝑘𝑦(𝑧+ 2𝜋),                                 (6) 
where the connection phase Θ and connection wave number ∆ 
depends on the poloidal wave number ky[3]. 

Eqs. (1)-(3) are numerically solved in (kx, ky, z, v||, µ) 
space except the E×B advection. Since direct calculations of 
nonlinear convolutions in wave number space are 
computationally too expensive, the nonlinear E×B advection 
term is evaluated in the real space and transformed back to 
the wave number space by means of the fast Fourier 
transform (FFT) algorithms and the 3/2 de-aliasing rule. 

 

3 Parallelization for peta-scale computing 
To attain good performance on a distributed-memory 

system, domain decomposition by using message passing 
interface (MPI) library is necessary, as well as thread 
parallelization. The original GKV code decomposes five-
dimensional phase space in three directions (z, v||, µ), which is 
not enough for peta-scale supercomputers. In order to 
advance to peta-scale computing, we additionally decompose 
wave-number space k = (kx, ky). By using the one-
dimensional FFT, the E×B advection term is evaluated in the 
following way: 

 

 1D inverse FFT for ky with the decomposition in kx. 

 Data distribution as the data in kx becomes local. 

 1D inverse FFT for kx with decomposition in y. 

 Calculation of the E×B advection term in real space (x, y). 

 1D FFT for x with the decomposition in y. 

 Data distribution as the data in y becomes local. 

 1D FFT for y with the decomposition in kx. 
 
Efficiency of this parallelization method is examined via a 

strong scaling test. Computations were carried out on the 
FX10 super computer in the University of Tokyo. In Fig. 2, 
relative speed of the computation, which is proportional to 
inverse of the elapsed time, is plotted as a function of the 
number of the wave-number-space decomposition. It 
demonstrates that the wave-number-space parallelization has 
good strong scaling in this range. We note that perpendicular 
grid number required for multi-scale turbulence simulations is 
larger than the case shown above, e.g., Nx = Ny = 4096. The 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

result shown in Fig. 2 suggests applicability of the wave-
number-space parallelization on peta-scale supercomputers. 
When we employ hundreds of thousands of cores, however, 
MPI communication time will become crucial, since data 
distributions in wave-number space are collective comm-
unications. We have to check computation-to-communication 
ratio carefully, and may have to employ masking of MPI 
communication time by overlapping between computations 
and communications. 

  

4 Conclusion 
We have presented a local gyrokinetic Vlasov simulation 

code to treat turbulent transport in magnetically-confined 
plasmas. Calculations of time evolution of distribution 
functions in five-dimensional phase space are 
computationally expensive, even when a flux-tube simulation 
domain is employed to reduce numerical costs. The 
simulation code is massively parallelized by domain 
decomposition in five-dimensional phase space and thread 
parallelization. First scaling test of the wave-number-space 
decomposition demonstrates good strong scaling. 
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Fig. 2. Strong scaling of the wave-number-space 
decomposition (where Nx = 512, Ny = 512, Nz = 32, Nv|| 
= 32, Nµ = 16). (k, z, v||, µ) coordinates are decomposed 
into 4 (and 8, 16, 32) × 2 × 2 × 2 subdomains and 8 
symmetric multi-processing threads are employed per 
subdomain, which corresponds to 256 - 2048 cores. 
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