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1 Introduction

Transport phenomena in a magnetically confined
plasma arises from two different mechanisms: particle col-
lision and turbulence. The former which is usually called
neoclassical (NC) transport determines an irreducible min-
imum transport level in a plasma. It also has a close re-
lationship to the radial electric field, the bootstrap cur-
rent, and so on which affects the transport properties in a
plasma through various mechanisms. Hence, the accurate
evaluation of the NC transport is a key issue to investi-
gate the confinement performance of a device although the
turbulence-driven transport often surpasses the NC trans-
port.

The drift kinetic equation which involves the guiding
center motion of particles is a basis to investigate the NC
transport [1] and the particle simulation is widely used to
numerically solve it. Although it has a lot of advantages
such as its easiness to parallelize, applicability to multi-
dimensional problems, etc., there is an inherent drawback
of a numerical noise proportional to 1/

√
N , where N de-

notes the number of markers used in the simulation. The
so-called δf Monte Carlo approach only solves the de-
viation of the total distribution function from the time-
independent part (usually Maxwellian) to reduce the noise.
This δf method can be interpreted as a control variate
technique for the variance reduction in the Monte Carlo
framework [2].

We have developed a numerical transport simulation
code, FORTEC-3D [3, 4], based on the two-weight δf
Monte Carlo method [5, 6]. FORTEC-3D have an advan-
tage of including the finite orbit width (FOW) effect in the
drift kinetic equation, which has been usually neglected in
conventional numerical NC transport studies but becomes
important in high temperature plasmas due to the large
radial drift of trapped particles and the low collisionality.
It should be emphasized that the FOW effect is expected
to become important in fusion reactors in the future. The
FOW effect arises from the finite excursion of the guid-
ing center orbits across the magnetic field lines and brings
higher order correction to the NC transport. The FOW ef-
fect on the NC transport and the formation of the Er has
been confirmed by comparing results of FORTEC-3D and
those of other codes which does not include it [4, 7]. The
codes used for the comparison above, however, are based
on the different approaches to calculate the NC transport,
thus more detailed and direct investigation for the FOW
effect is required to quantitatively and individually assess
their influence on the NC transport. A new local NC trans-
port code based on the same physical model as FORTEC-
3D except for the FOW effect needs to be developed.

On the other hand, since such a local code is
less time/CPU-consuming as compared to the original
FORTEC-3D due to its absence of the radial motion, it
can provide us to test a new improved control variate (CV)
technique proposed by Kleiber, et al. in Ref. [8]. Their im-
proved control variate method has been proved to reduce
the numerical noise drastically when applied to a simple
one-dimensional collisional model. Thus, to test the effect
of the new scheme at first, the new local code, which solves
the drift kinetic equation locally in four-dimensional phase
space, has been developed.

In this paper, we present initial results obtained by
our new local neoclassical transport code with the CV
method. The rest of the paper is organized as follows:
First, the two-weight δf Monte Carlo method with the
new CV method is briefly reviewed in Sec. 2. Section
3 devotes to numerical results with and without the new
control variate method. Finally, a summary is given in
Sec. 4.

2 δf Monte Carlo method

FORTEC-3D solves the drift kinetic equation for the
deviation of δf(z, t) = f − fM:

dδf

∂t
≡

[
∂

∂t
+
(
v∥ + vd

)
· ∇ − CTP

]
δf

= −vd · ∇fM, (1)

where z denotes arbitrary phase space variables, f and fM
are the total distribution function and the Maxwellian fM,
v∥ = v∥b and vd denote the parallel and drift velocity of
the guiding center particle, respectively, b is the normal-
ized vector parallel to the magnetic field,and CTP is the
pitch angle collision operator. For simplicity the new local
code at present only involves the pitch angle scattering and
neglects the energy scattering for markers. In the Monte
Carlo method, it is required to solve the eq. (1) along the
trajectories of marker particles defined by ż, where dot
denotes the total time derivative, where the phase space
coordinates, (ψ, θ, ζ, v∥, v⊥), are used for the orbit calcu-
lation, and ψ, θ, ζ represent the radial label, poloidal and

toroidal angle variables respectively, and v⊥ =
√
v2 − v2∥

and v is the magnitude of the velocity of the marker. It
is noted that ψ can be assumed constant in the local ap-
proach here due to the absence of the radial drift. For the
two-weight δf scheme in FORTEC-3D, each marker has
two weights of w1 and w2 and the discretized marker par-
ticle distribution function is given in the extended phase
space F = F (z, w1, w2; t). Then the solution of eq. (1),
δf and the Maxwellian fM at any time can be evaluated
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Fig. 1. The distribution function as a function of the pitch
angle variable, ξ. A red solid line represents a result ob-
tained by using the improved control variate, and a blue
dashed line by the ordinary δf Monte Carlo approach.

using F as: δF =
∫
w1Fdw1dw2 and fM =

∫
w2Fdw1dw2.

The time evolutions of w1,p and p2,p are given as follows:

ẇ1,p = −w2,p

fM
ψ̇
∂fM
∂ψ

, (2)

ẇ2,p =
w2,p

fM
ψ̇
∂fM
∂ψ

, (3)

where the p subscript denotes the index of the maker parti-
cle. It is noted that the v̇ = 0 is used because the potential
energy is assumed to be constant on a flux surface.

It is pointed out that the two-weight δf Monte Carlo
method described above does not fully exploit the ad-
vantage of the δf procedures [8]. Further reduction of
the noise is realized by introducing a new weight w̃1,p =
cp − αw2,p, where cp = w1,p + w2,p and α is a numerical
factor specified later. With the new weight, the total dis-
tribution f can be obtained by f =

∫
w̃1Fdw1dw2. The

parameter α is determined to minimize the variance of the
resultant f by choosing

α ≡ Cov [c, w2]

V [w2]
, (4)

where Cov[·, ·] and V[·] denote the covariance and the vari-
ance of given quantities. It is noted that α = 1 corresponds
to the ordinary δf Monte Carlo method and α = 0 to the
full-f method, respectively.

3 Numerical results

The new local code has been applied to a plasma of elec-
tron species with an axisymmetric (ζ-independent) mag-
netic field of which the magnitude is given by, B/B0 =
1 − ϵt cos θ, where B0 correspond to the magnetic field
strength at the core and ϵt denotes the toroidicity. Here,
B0 = 1.88T and ϵt = 0.05 are used. The number of marker
particles used is 32, 000.

To see how the improved control variate scheme reduces
the numerical noise, the δf part of the distribution is in-
vestigated. Figure 1 shows resultant δf at the steady state
as a function of the pitch angle ξ = v∥/v. It is noted that
α is evaluated only in the ξ direction, that is, the weights
w1 and w2 are integrated in the θ and v directions to eval-
uate the eq. (4). As can be seen in this figure, the result

obtained by the improved control variate method does not
reduce the noise compared to that obtained by the ordi-
nary δf Monte Carlo method. This is accounted for by the
small variance of w2 in the simulation. Since the noise in
the δf method mainly arises from increase in the variance
of w2 and a resultant weight-spreading in w1, the noise
in the ordinary δf method consequently does not become
large if the variance of w2 is does not increase. In fact,
the αi factor for the improved method is nearly kept unity
at all over the ξ-space, and α ≃ 1 represent the situation
that the ordinary δf method works well sufficiently.

4 Summary and discussion

In this paper, we report the application of an improved
control variate technique for a local neoclassical transport
code, which aims a direct comparison with our FORTEC-
3D code to investigate the FOW effect in more detail.
The effect of the variance reduction has been explored by
the introduction of the improved control variate to the
ordinary two-weight δf Monte Carlo method. The im-
proved control variate is calculated only in the ξ-space
although the drift kinetic equation solved in the code is
four-dimensional. The result has shown that no signifi-
cant improvement has been observed when compared to
the ordinary δf method. This has occurred from the fact
that the ordinary δf method has already worked well due
to the small variance of the w2.

The variance of w2 in general increases as the radial
drift of particles increases since the evolution equation is
proportional to the ψ̇ which represent the drift velocity.
Thus, the control variate is expected to be more effective if
we apply it to a higher temperature and/or less collisional
plasma, and we will report in the presentation the results
of parameter survey calculations for the improved control
variate. In addition, the multi-dimensional control variate
method and the energy scattering for the marker particles
are also implemented and results will be presented.
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