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1 Introduction

In 1883, Osborne Reynolds experimentally discovered

that the state of the flow in a pipe depends on a single

parameter, now called Reynolds number Re, and that it

changes qualitatively from laminar to turbulent at some

critical Re number, Rec � 2000, under sufficiently large

disturbance. Steady laminar flow being linearly stable

for all Reynolds numbers, the transition to turbulence

is caused by finite amplitude perturbations. This non-

linearity makes it difficult to locate Rec. Around Rec,

axially localized turbulent states, called ”puffs”, can be

observed.[1] Because the length of a puff seems statisti-

cally constant at moderate Re number, it was thought

to be an equilibrium state. However recent many exper-

imental and numerical studies have revealed that a tur-

bulent puff decays within a finite time and the statistical

probability to persist can be understood as a stochas-

tic process. Furthermore some studies have shown that

the decay time does not diverge at any finite Re num-

ber. These facts make the determination of Rec more

complicated.

Fig. 1: Turbulent puff in pipe flow.[1] Gray scale rep-

resents perturbation velocity, uz − 〈uz〉θz, in a plane

through the pipe’s centerline.

On the other hand, a puff can not only decay but

also split. More recently, Avila et al. (2011) made a

break-through in this problem. They have also shown

that the splitting time can be explained by a stochas-

tic process, and they defined Rec as the intersection of

two curves for decaying and splitting times above which

turbulence is sustainable in the thermodynamic limit.[2]

We consider this splitting process and show how it de-

velops.

Fig. 2: Mean lifetime of a puff.[2] Dashed and solid

curves represent decaying and splitting time respec-

tively.

2 Equations

We consider the flow of an incompressible viscous

fluid driven by an external force and imposed time inde-

pendent mass flux U in a straight circular pipe of radius

a. A cylindrical polar coordinate system (r, θ, z) is in-

troduced to describe the velocity field u with the z axis

taken on the pipe centerline. We apply no-slip condi-

tions at the pipe wall and periodic boundary conditions

in the z direction with period aL. Then the govern-

ing equations of the flow are given by the continuity

equation and Navier-Stokes equations,

∇ · u = 0, (1)

∂u

∂t
+ (u · ∇)u = −∇p+ 1

Re
∇2u (2)

together with the no-slip boundary conditions

u(1, θ, z) = 0 (3)

and the periodic boundary conditions

u(r, θ, z + L) = u(r, θ, z). (4)

Here, the Reynolds number is defined as Re ≡
2aU/ν and, all the physical quantities have been non-

dimensionalized by a for length, 2U for velocity and ν



being the kinematic viscosity. The reduced pressure p

includes an external force which is consistent with the

constant mass flux condition.

3 Numerical Scheme

The solenoidal field u can be expressed as

u = ∇× (ψẑ) +∇× (∇× (φẑ)) . (5)

Using a spectral method, we solve numerically the set

of evolution equations for these scalar functions which

are equivalent to above equations for u. We approxi-

mate the scalar functions by a finite series of expansion

as

(
ψ

φ

)
=

K∑
k=−K

M∑
m=−M

N∑
n=|m|

n+m=even

(
ψ̂mk
n

φ̂mk
n

)
Φm
n (r)ei[mθ+(2π/L)kz]

(6)

where K, M and N (≥ M) are positive integers

and Φm
n (r) are Zernike circular polynomials. We take

(N,M,K) = (40, 21, 1535).

4 Splitting

The time variation of the streamwise velocity on the

centerline is plotted in Fig. 3 that shows spread-

ing of puffs at Re =2100,2150 and 2200. Dark re-

gions represent disturbed flow. Each simulation starts

from the same initial condition, a single puff state at

Re = 2000. We take the streamwise period L very long,

L = 400, to weaken the effect of the boundary condi-

tions. At Re = 2100 a puff splits irregularly, whereas at

Re = 2200 the turbulent region seems to be expand con-

tinuously while containing laminar spots at places. An

example of puff splitting at Re = 2100 is represented in

Fig. 4. A puff sometimes throws a disturbance ahead,

which is associated with a low-speed streak. At lower

Re, most of these disturbances dissipate (Fig.4 (a)(b)),

while the others lead to the creation of a new puff ahead

of the original one (Fig.4 (c)(d)). In case of a success-

ful event, thrown-ahead disturbance spreads around in

the spanwise (θ) direction after sufficient downstream

motion. The frequency of these events and the success

ratio increase as Re increases and the spreading gets

more continuous at higher Re number.
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Fig. 3: Spreading of turbulence.

Fig. 4: Puff splitting. Streamwise velocity is plotted

in the θz plane at r = 0.8.
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