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1 Introduction

A concept of a negative temperature state for two-
dimensional (2D) point vortex system was first introduced
by Onsager to explain large-scale structure formation, for
example, Jupiter’s Great Red Spot, Naruto eddy, and so
on [1]. If the system temperature is negative, a probability
proportional to exp(−βE) increases as the system energy
increases, so that higher energy configuration is possible,
where β is inverse temperature and E is energy.

Motivated in part by his conjecture, we have tackled this
problem both numerically and theoretically. In this paper,
we will present recent results revealing that an equilibrium
state at negative absolute temperature consists of multiple
temperature subsystems.

2 Point vortex system

We consider a system consisting of N/2 positive and
N/2 negative point vortices confined in a circular area with
radius R. The word ”positive vortex” means that the cir-
culation of the vortex is positive. The value of the i-th
point vortex Ωi is either Ω0 or −Ω0 where Ω0 is a positive
constant. System energy H is given by
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where ri is the position vector of the i-th point vortex
and ψi is the stream function at ri which corresponds the
energy possessed by the i-th point vortex. The effect of
the circular wall is introduced by the image vortex located
at r̄i = R2ri/|ri|2. Motions of the vortices are traced by
the following equations of motion:
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3 Negative absolute temperature

Here we briefly summarize the concept of the negative
absolute temperature introduced by Onsager [1]. Statisti-
cal definition of temperature T is given by
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where S is entropy, W is density of state and Boltzmann’s
relation is assumed. The density of state increases as en-
ergy increases in normal systems, so that temperature is
always positive. On the other hand, if the total phase
space volume (total number of states available) is limited,
the density of state has a peak at some energy E0 and
decreases E > E0. Thus, T becomes negative at E > E0.
The equations of motion of the point vortices are given by
Eq. (3). The configuration space coincides with the phase
space for the point vortex system. As the total phase space
volume is (πR2)N <∞, Onsager anticipated the existence
of the negative temperature state for the point vortex sys-
tem.

4 Simulation results

To reveal the characteristics of the point vortex system
in negative temperature state, we have carried out simu-
lation research.

4.1 Equilibrium distribution

Equilibrium distributions in both negative and positive
temperatures are obtained time asymptotically. They are
shown in Fig. 1. For the positive temperature case, both

Fig. 1. Typical equilibrium distributions of point vortices
at (a) positive and (b) negative temperatures.

sign vortices spread uniformly over the circular area. On
the other hand, for the negative temperature case, same
sign vortices tend to cluster and form clumps exclusively
consisting of single sign.



4.2 Population of point vortices categorized by
energy

The energy possessed by each point vortex is defined by
ψi as shown in Eq. (2). Populations (histograms) as a
function of ψi are plotted in Fig. 2. For the positive tem-

Fig. 2. Population is plotted as a function of energy pos-
sessed by each point vortex ψi.

perature case, the peak is located at ψi ≈ 0. This is due
to the uniform distribution of the point vortices. For the
negative temperature case, there are three peaks. The left-
most and the rightmost peaks correspond the clump dis-
tributions. The center peak corresponds the background
uniform distribution outside the clumps.

To confirm the origin of the peaks located at the both
ends, population is recalculated separately for the point
vortices inside the clump and the others. The result
is shown in Fig. 3. Red line indicates the population
of the vortices inside the clumps, and blue line outside
the clumps. We categorize the energy regions in 8 parts
in Fig. 3. In region (1), the population decreases lin-
early, which corresponds the distribution is proportional
to exp(−βΩiψi). The slope is almost kept constant among
the various simulations with NΩ0 = constant. The cen-
ter peak resembles the positive temperature case shown in
Fig. 2 (a). Indeed, the blue line originates the background
vortices located outside the clumps. These observations
indicate that the equilibrium distribution consists of the
subsystems of different temperature including positive and
negative ones.

Another evidence is given by Fig. 4. Equilibrium vortex
distribution is rearranged in conjunction with the 8 energy
ranges shown in Fig. 3. This figure clearly indicates that
the vortices in the cores of the clumps yield the leftmost
and rightmost populations. It is surprising that the bound-
aries of the different temperature vortices are parallel to

Fig. 3. Energy population is plotted separately for the
vortices outside the clumps and inside the clumps

Fig. 4. Equilibrium distribution categorized by 8 energy
ranges shown in Fig. 3 is shown. Black line indicates the
stream function.

the stream function. As there is no flow (particle motion)
across the boundaries, the difference of the temperature is
preserved in the equilibrium distribution.

5 Conclusion

In this paper, we have shown that the equilibrium state
of 2D point vortex system in negative temperature con-
sists of multiple subsystems of different temperature. The
difference of the temperature is maintained due to the no
particle transport across the boundary.
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