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1 Introduction 

In recent modern era of neural networks technology, a 
model called Spiking Neural Network (SNN) was born. This 
SNN was classified by Maass [1] as the third generation of 
neural networks. It is a new kind of neural network which is 
inspired and motivated by the biological neurons ways of 
communication. The biological neurons communicate with each 
other through the media of action potentials, often called pulses 
or spikes. This is a well-known aspect of real neurons, which 
transmit information by voltage pulses of the membrane 
potential.  

SNN has been much considered in attempt to achieve a 
more biologically inspired artificial neural network. The 
objective of the SNN as the name implies, tries to overcome the 
over simplification of the ANN system and emulate the pulse 
system to come out with a more biologically realistic neural 
system. 

This paper presents a preliminary investigation and 
development of the unsupervised learning processes in SNN. 
This learning mechanism is extended to one of the most 
successful paradigm of unsupervised learning: the Kohonen 
Self-Organizing Maps [3]. Hence, a Self-Organized SNN based 
on Spike Respond Model (SRM) is constructed. Spiking 
neurons with delays to encode the information is suggested. 
Thus, each output node will produce a different timing which 
enables competitive learning. The model is designed and 
programmed in MATLAB environment. Further simulation 
analysis was performed to observe the network self-organizing 
learning and its topology preservation behavior. The model is 
further assessed with real-world dataset for data clustering 
simulation. 
 

2 Self-Organized SNN Architecture 
There exist various kinds of spiking neuron models. The 

neuron model presented here is based on the simplified model of 
the Spike Response Model introduced by Gerstner [2]. This 
model is further structured to form a self-organized SNN 
architecture. The network architecture is illustrated in Fig. 1. 
The diagram illustrates the basic architecture of self-organized 
SNN. The presynaptic neurons (the inputs) are each of them 
connected to all the postsynaptic neurons (the output layer). In 
this diagram the inputs are n dimensional elements and the 
output has 5x5 layer structure. Every time a set of n dimensional 
element input is presented to the network, a spike potential with 
different delays travel across each connection. These neurons 
will compete with each other and through some distance 
measurement the winner is chosen. Through this process, the 
neurons are expected to organize themselves in the topology 
preserving grid. 

The Self-Organized SNN architecture can be categorized 
into three main processes i.e. initialization, delay adjustment and 
self-organization. 

 
 
Fig.1. A basic architecture of 5x5 self-organized SNN 

2.1 Initialization 
In this stage, the presynaptic neurons (as illustrated in Fig.1) 

are pre-process before the learning phase. Initial random values 
of inputs are set and transform into temporal inputs. Assumption 
is made that each neuron is firing only once i.e. one spike per 
neuron, each neuron of the input layers hold the value of each 
inputs; dependent on the dimension of the inputs. 

2.2 Delay adjustment 
The connection strength of the input-output strength can be 

determined by delays. The delay is given by the difference 
between the presynaptic neuron firing time and the time the 
postsynaptic potential starts rising.  

 

2.3        Self-Organization 
The Self-Organized SNN organizes its neurons into an input 

network layer and an output network layer. Each neuron in the 
input layer is connected to each neuron in the output layer. The 
two-dimensional output layers act as a map where each neuron 
is positioned. For this winning measurement we use the shortest 
Euclidean distance delaysinputstemporal −  between the input 
and the competing neurons.  

 

3 Simulation Results 

3.1 The Self-Organized SNN 
Fig. 2 displays a simulation result of the above mentioned 

algorithm in section 2. In this case the inputs are two-
dimensional which is sequentially feed and applied to the 
network. Each input is assigned with an arbitrarily small value 
of delay. The output activation is calculated at each run by 
measuring the difference of the inputs and the delays value. 



 

Through this process, the node that fired the quickest spike is 
chosen as the winner. 

 

 
Fig. 2. Self-Organized SNN Simulation Result 

 

3.2 Data Clustering 
The proposed Self-Organized SNN was further assessed 

with real-world dataset for data clustering. The objective was to 
analyze the effectiveness of the architecture on data analysis 
exploration. The Glass Identification dataset from UCI 
Repository [7] was used for the experiment. 

 

Fig. 3.  Example of Glass data Training results with 1000   
      epochs 

4 Conclusion 
The experimental results showed that Spiking Neural 

Networks is able to be implemented in self-organized learning. 
Few publications have been reported relating to the 
implementation of Spiking Neural Network in self-organization 
networks [4, 5 and 6]. However, the research on Self-Organizing 
Spiking Neural Network is still an open discussion. Researchers 
reported different models with different approaches. 

The Self-Organized SNN which was presented in this paper, 
contribute another perspective of the Spiking Neural Networks 
unsupervised learning. The learning computes the delay of the 
input-output neurons for its competitive process. This method is 
an advantage because a straightforward Euclidian distance 
measurement can be used.  

The experimental results had also shown the application of 
self-organized SNN on data clustering. The network was trained 
and tested on Glass data sets. The training and testing simulation 
results show that the network is capable to perform to some 
extent the desired results. 
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