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1 Introduction 
Electronic structure theory such as ab initio molecular orbital 
(MO) theory is the powerful tool in elucidating chemical 
phenomena such as electronic states, molecular structures, 
properties, and reaction mechanisms. The high-level quantum 
chemical calculations excellently reproduce the properties for 
small molecules in the same or better accuracy with the 
experiments. However, the computational costs drastically 
increase with respect to the size of molecules when the high-
level quantum chemical calculations are performed. To elucidate 
chemical phenomena of nano molecules and biological 
molecules, the development of fast and robust theories and 
computational techniques of the ab initio quantum chemistry is 
desired. Especially, non-covalent interactions such as van der 
Waals forces play important roles in the chemical phenomena of 
such systems. Those interactions come from the electron 
correlations. The generally accepted density functional theory 
(DFT) functionals fail to describe non-covalent interactions 
because they suffer from self-interaction problems and do not 
incorporate the long-range correlation effect. 
Therefore, the electron correlation theory based on the ab initio 
MO theory is indispensable for the robust reproduction of non-
covalent interactions. Among these theories, second-order 
Møller–Plesset perturbation theory (MP2) [1] is the simplest 
method to account for the electron correlations at the ab initio 
level and often used for the practical chemical applications. 
However, even the computational cost of MP2 calculations 
scales O(N5) with respect to the size of molecules (N), and 
practical applications are limited to molecules of moderate size. 
To make the MP2 calculations applicable to the extended 
systems such as nano molecules and biological molecules, 
development of efficient computational techniques is desired. 
In this study, we present an efficient parallel resolution-of-
identity (RI) MP2 (RI-MP2) algorithm and fragmentation based 
O(N) parallel RI-MP2 methods. These methods are suitable for 
the massively parallel computations on the supercomputers such 
as “K computer”.  

2 Parallel RI-MP2 Algorithm 
We have developed a parallel RI-MP2 algorithm for large 
molecules [2] and a RI-MP2 method for periodic systems [3]. 
These methods are based on the RI approximation of four-centre 
Coulomb integrals, and highly reduce the computational costs. 
The parallel RI-MP2 algorithm is designed for the efficient 
parallel calculations by reducing the I/O and network 
communication overheads and considering the uniform task 
distribution for the efficient load balancing. 
Recently, we have modified our parallel RI-MP2 algorithm from 
original one. In the original algorithm, the occupied orbital pairs 
are distributed to processors for the calculation of four-centre 
integrals. However, the number of occupied orbital pairs is 
small, and this makes the load balancing problems in the cases 

of the massively parallel computations. In order to use more 
large number of CPU cores with the efficient load balancing, we 
have changed to use the virtual orbital pairs for the parallel task 
distribution. Generally, the number of virtual orbitals is four 
times larger than the number of occupied orbitals, and the load 
valancing is improved from the original algorithm. We have 
implemented the modified version of parallel RI-MP2 algorithm 
into GAMESS [4] program and NTChem program. In these 
implementations, we have performed MPI/Open-MP hybrid 
parallelization for the efficient usage of the memories and the 
network devices in the multi-core architectures. 
Figure 1 presents the speedups of parallel RI-MP2 calculations.  
The speedups scale almost liner with respect to the number of 
CPU cores.  These results demonstrate the efficiency of our 
parallel algorithm and implementations. Using the parallel RI-
MP2 codes developed by us, MP2 calculations of large 
molecules can be performed in modest times with massively 
parallel supercomputers and low-cost personal computer (PC) 
clusters.  

 

3 O(N) RI-MP2 methods for Extended Systems 
We have developed efficient implementations that are suitable 
for the massively parallel computations on the supercomputers. 
However, even for employing RI-MP2 method, the 
computational costs of these codes are still O(N5) with respect to 
the size of molecules N, and its practical applications are limited 
to molecules of moderate size. To overcome this limitation of 
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Figure. 1. Speedups of parallel RI-MP2/cc-pVDZ 
calculations of valinomycin and bucky-catcher C60@C60H28. 
Parallel RI-MP2 calculations were performed on the Xeon 
X5670 cluster connected with InfiniBand. 



 

computational scaling, we have applied the parallel RI-MP2 
codes to the fragment molecular orbital (FMO) method [5], the 
divided-and-conquer (DC) method [6], and the molecular 
tailoring approach (MTA) [7].  In these methods, a target 
molecule is divided spatially into small fragments and then the 
energies and properties are obtained by accumulating 
contributions of fragmented subsystems. The application of RI-
MP2 to those fragment based linear scaling methods 
considerably speeds up MP2 calculations because the 
computational scaling and prefactor of RI-MP2 are smaller than 
those of conventional MP2. 

3.1 RI-MP2 with FMO Method (FMO-RI-MP2) 
The FMO method is efficient approach for the rapid ab initio 
quantum chemical calculations of large biological molecules 
and nanomolecules  [8,9]. FMO reduces the computational costs 
considerably by dividing the target system into fragmented 
subsystems and performing ab initio quantum chemical 
calculations for each monomer and dimer (and trimer, if 
necessary) of fragments. FMO can treat the electron correlation 
successfully in the MP2 level (FMO-MP2). This opens up many 
practical chemical applications of FMO to biological molecules 
such as protein–ligand bindings [8,9]. 
We have developed a new implementation of FMO-RI-MP2 
based on the GAMESS version of parallel RI-MP2 program 
mentioned in Section 2. In this implementation, we have 
extended FMO-RI-MP2 to treat the three-body FMO method 
(FMO3-RI-MP2) as well as the two-body FMO method (FMO2-
RI-MP2). 
FMO-RI-MP2 considerably speeds up FMO-MP2 calculations 
of biological molecules without sacrificing chemical accuracy. 
Table 1 presents the computation times and errors of total 
energy of Trp-cage protein (PDB ID: 1L2Y).  FMO2-RI-MP2 
and FMO3-RI-MP2 calculations of 1L2Y protein were finished 
within 0.5 and 8.2 h, respectively, whereas FMO2-MP2 and 
FMO3-MP2 calculations took 1.1 and 23.9 h, respectively. The 
errors of FMO2-RI-MP2 and FMO3-RI-MP2 are at most 3,745 
and 0.104 mHartree, respectively. 
Recently, we have ported our FMO-RI-MP2 code to K computer 
and have performed MPI/Open-MP hybrid parallelization. The 
code was tested for an FMO-RI-MP2 calculation of real protein 
on K computer up to 86016 CPU cores. The FMO-RI-MP2 code 
has been supplied as a library program in K computer [10]. 

Table 1. MP2 energies, errors of MP2 energy, and wall times of FMO-
MP2/6-31G* and MP2/6-31G* calculations of 1L2Y protein. 

*cc-pVTZ auxiliary basis set was employed for RI-MP2 calculations. 
Calculations were performed on 32 nodes of Pentium 4 640 PC cluster 
connected with the gigabit ethernet. 

3.2 RI-MP2 with DC Method (DC-RI-MP2) 
The MP2 method based on the DC approach (DC-MP2) is one 
of the efficient methods for the calculation of large 
nanomolecules [11]. In DC-MP2, the total system is divided into 
small nonoverlapping subsystems called central regions. Some 
atoms that are located around a central region are added to the 
subsystems to account for the environmental effects that are 
missing by the division of the total system. The MP2 correlation 
energy of a total system is obtained as a sum of the MP2 

correlation energies of subsystems, which are evaluated 
exploiting the localized molecular orbitals provided by the DC 
Hartree–Fock (HF) calculations. 
Recently, we have developed a new implementation of DC-RI-
MP2 code based on the GAMESS version of parallel RI-MP2 
program mentioned in Section 2. In this implementation, we 
also performed multilevel parallelization of DC-MP2, which is 
suitable for the calculations of extended systems on the 
massively parallel supercomputers [6]. The parallelization 
scheme is a combination of the coarse-grain parallelization 
assigning each subsystem to a group of processors and the fine-
grain parallelization where the computational tasks for 
evaluating the MP2 correlation energy of the assigned 
subsystem are distributed among processors in the group. The 
DC-RI-MP2 code has been ported to K computer and supplied 
as a library program in K computer [10]. 

4 Summary 
We have developed an efficient parallel RI-MP2 algorithm. We 
also have developed efficient computational techniques and 
codes of RI-MP2 based on molecular fragmentation based O(N) 
quantum chemical methods such as FMO-RI-MP2 and DC-RI-
MP2. These methods and codes are suitable for the massively 
parallel computations of extended systems on the 
supercomputers. The codes developed in this study have been 
supplied to users of K computer as a library program [10]. 
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Energy [H] Error [mH] Time [h] 

FMO2 
   

 
RI-MP2 -7461.560235  3.745  0.5  

 
MP2 -7461.560450  3.530  1.1  

FMO3 
   

 
RI-MP2 -7461.563877  0.104  8.2  

 
MP2 -7461.564100  -0.120  23.9  

Full 
   

 
RI-MP2 -7461.563758  0.222  33.8  

 
MP2 -7461.563980  

 
59.2  


