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1 Introduction 
First-principles quantum-mechanical electronic structure 
calculations based on the density-functional theory (DFT) is an 
important ingredient of material sciences. The system sizes 
handled in usual DFT calculations are limited within a thousand 
of atoms due to the computational complexity of fully quantum-
mechanical approaches. 
     Real-space DFT (RSDFT) code, which has been developed 
in our group, is a promising application to overcome the size 
difficulty in first-principles quantum mechanical calculations. 
RSDFT is developed based on the real-space grid formulation of 
DFT [1] instead of conventional reciprocal-space formulation, in 
which frequent use of fast Fourier transform (FFT) is inevitable, 
so that it’s suitable for massively-parallel computers such as K 
computer [2]. Recently, we have performed electronic structure 
calculations for silicon nanowires with 10,000 to 1000,000 
atoms by using RSDFT on the K computer with very high 
performance, and we got Gordon-Bell prize in 2011 with this 
work. 
     In this paper, I review the first-principles electronic structure 
calculations in DFT and our program code RSDFT. In addition, 
I give an introduction on the technological importance of our 
target system silicon nanowire (SiNW), and discuss the results 
of the calculations for that system. 

2 First-principles quantum mechanical 
calculations based on the density functional 
theory 

The foundation of DFT has been given by Hohenberg and Kohn 
in 1964 [3], and subsequently, a formulation which is suitable 
for practical calculations has been given by Kohn and Sham in 
1965 [4]. In the Kohn-Sham formulation of DFT, total energy of 
the system and the electron density are obtained by a set of 
functions, called the Kohn-Sham orbitals!
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is the electron density, N and NION is the number of electrons 
and ions in the system, respectively, v

ION
 and v

PP

a  represent the 

Coulomb interaction between electrons and ions [5]. E
XC

 is 
called the exchange-correlation energy which arise from 
quantum mechanical effects. The exact functional form of the 
exchange-correlation energy is unknown, so that simple 
approximate forms, such as local-density approximation [6], are 
utilized for practical calculations. 
     Minimization of the total-energy functional with respect to 
the Kohn-Sham orbitals, with ortho-normalization conditions 
among the orbitals, leads the following equation: 
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This is called the Kohn-Sham equation [4] which is the basic 
equation of first-principles electronic structure calculations. It is 
worse noting that Kohn-Sham equation is not a usual eigenvalue 
problem but nonlinear one, because the integro-differential 
operator Eq. (4) depends on the eigenvector itself through the 
electron density Eq. (2). Therefore, we have to solve the Kohn-
Sham equation (nonlinear eigenvalue problem) self consistently. 

3 Real-space grid DFT code 
In the real-space grid calculations, we discretize the Kohn-Sham 
equation in 3-D spatial grid as shown in Fig. 1, and represent the 
differential operator in a higher-order finite-difference 
approximation. Then the Kohn-Sham equation is recast into a 
conventional linear-algebraic eigenvalue problem. 
 

Fig. 1   Real-space grid representation of the unit cell of 
crystalline silicon. The eight sub cells are allocated on each 
CPU (or node) for parallel computations. 
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Fig. 2     Flow chart of self-consistent procedure of RSDFT 
calculations. 
 
 
We divide the spatial region into several sub regions, and 
allocate the work on each region to each CPU (or node). In the 
finite-difference calculations, we need to exchange boundary 
values between next-nearest nodes, and we use MPI_ISEND and 
MPI_IRECV routines for this purpose. For global summations 
(integrations), we use MPI_ALLREDUCE. In addition to the 
grid parallelization, we also parallelize in the Kohn-Sham 
orbitals. In each node, we can also parallelize tasks in thread by 
using OpenMP. 
     The flow chart of the RSDFT calculations is shown in Fig. 2. 
The overall algorithm is the subspace-iteration method, which is 
a standard way to solve large-sparse eigenvalue problems. As 
mentioned previously, our problem is nonlinear eigenvalue 
problem, so that we have additional density and potential 
function update processes in the flow chart to achieve the self-
consistent solution. 
     The computational cost of the RSDFT is proportional to the 
cube of NION, the number of ions (atoms) in the system. 
However, the most of computations in O(NION

3) routines (e.g. 
Gram-Schmidt) can be performed with level 3 BLAS, so that the 
computational time is not so much increased as the system size 
increases. 

4 Results of electronic structure calculaiotns for 
silicon nanowires 

     SiNW Field-Effect Transistors (FETs) are expected to be 
boosters in post-scaling semiconductor technology [7]. Clear 
scaling of short-channel effects vs. NW sizes with the fixed gate 
lengths has been observed [8]. Reducing the dimensions of 
SiNWs has been shown to improve the short-channel control. 
Furthermore, SiNW FETs with channel dimensions of 5.0 nm × 
6.3 nm have been fabricated [8]. A recent experiment showed 
that the optimal dimension of the cross section of the SiNW 
FET is around 10 nm [9]. At such small scales, quantum 
confinement becomes prominent, and therefore reliable quantum 
mechanical calculations are highly desired to investigate the 
characteristics of SiNW devices. 

Fig. 3     Dependence of electron states on the morphology of 
the cross sectional shapes of the silicon nanowires. 
 
 
We have studied the electron states of SiNWs with several 
cross-sectional shapes and channel lengths. The size of  the 
systems is ranging from 10,000 atoms to 100,000 atoms. These 
numbers of atoms are the same as those of real device sizes of 
SiNWs used for surrounding-gate type FETs. 
     In Fig. 3, we show the calculated electron density of states of 
SiNW with circular and elliptic cross sectional shape. Clearly, 
the electron states depend on the cross-sectional shape of 
SiNWs due to quantum confinement effect. 
     From the first-principles calculations, we can calculate the 
current and current-voltage characteristics of SiNW FETs. 
These are helpful information for the development of real 
devices. We believe that the RSDFT code opens a way to study 
SiNW FETs from first-principles of quantum mechanics in real 
device sizes. 

5 Summary 
     We have developed RSDFT code to perform large-scale first-
principles quantum mechanical calculations on massively 
parallel computers. RSDFT efficiently works on the K computer, 
and it makes calculations for 10,000-atom to 100,000-atom 
systems possible. We got Gordon-Bell prize in 2011 with this 
work. 
     We perform first-principles calculations for SiNWs in real-
device sizes, and confirm the dependence of electron states on 
the cross-sectional shape of SiNW due to quantum confinement 
effect. The results show that RSDFT opens a way to study 
SiNW FETs from first-principles. 
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