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1 Introduction

The basic equation for chemistry is known and it is
called the Schrödinger equation, however, it is also known
that the Schödinger equation is too difficult to solve [1].
This is a motivation for direct determination of the second-
order reduced density matrix (2-RDM) [2] instead of solv-
ing the Schödinger equation, since it is much simpler than
wavefunction by following reasons: (i) we can calculate
the total energy and all physical proprieties without ap-
proximation by the 2-RDM (ii) the number of variables
is always four regardless how many electrons exist in the
system, and We hope we can construct wave mechanics
without waves, and much simpler.

One major obstacle for the RDM method that the 2-
RDM should satisfy the N -representability condition, that
trial 2-RDM should have its parent wavefunction, other-
wise, it is non-physical. It is not understood very much
in two ways: approximate or complete solution to the N -
representability is not very well understood, and how to do
practical and systematic calculation had been unknown.
There are some early attempts, but faded away.

In 2001, interest returned to the RDM method when
Nakata et al. [3] formulated the problem as a primal
semidefinite programming problem. They performed a di-
rect variational calculation of the 2-RDM employing the P ,
Q and G conditions using the well-established semidefinite
programming solver known as SemiDefinite Programming
Algorithm (SDPA) [4]. This approach was applied to many
few electron atoms and molecules. Their results using the
P , Q, and G conditions were very encouraging; yielding
around 100 to 130% of correlation energy as well as be-
ing able to produce the dissociation curve of the nitrogen
dimer in good agreement with fullCI. Zhao et al. included
the T1 and T2 conditions in addition to the P , Q and G
conditions in this approach for their calculations on small
molecules [5]. The accuracy of their results are compa-
rable to coupled-cluster singles and doubles with pertur-
bative triples (CCSD(T)) at equilibrium geometries. The
calculated correlation energies range typically from 100 to
101%. Mazziotti confirmed the findings of Nakata et al. [3]
and Zhao et al. [5], by applying these conditions to larger
systems. He accomplished this by implementing a semidef-
inite programming solver [6]. Mazziotti et al.’s thorough
study of these N -representability conditions was impor-
tant to establish the validity of the approach.

In this paper, we present summary of our research.

2 The Reduced-Density Matrix Method

2.1 The Schrodinger equation in Chemistry

The ground state energy calculation of a non-relativistic
and time-independent, N -electron molecular system under
the Born-Oppenheimer approximation is the most impor-
tant problem It can be obtained as the lowest eigenvalue
E of the electronic Schrödinger equation:

HΨ(z) = EΨ(z).

The Hamiltonian in second quantized form is expressed as
follows:
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where a† and a are creation and annihilation operators,
and where vi
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in which ZA is the atomic number of the nucleus A, riA is
the distance between the electron i and nucleus A, and rij

is the distance between two distinct electrons and {ψi}∞i=1

is the one-particle complete orthnormal system. We usu-
ally choose finite subset from {ψi}∞i=1, and it is called “ba-
sis set”.

2.2 The reduced density matrix and variatioanl
method

The definition of 1- and 2-RDM in the second-quantized
versions are following:
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where D =
P
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P
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The ground state energy Emin can be calculated by min-

imizing the total energy over 1- and 2-RDMs.
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2.3 N-representability condition and the RDM
method

N -representability condition on 1- and 2-RDMs is first
coined by Coleman, that whether trial 1- or 2-RDM has
its N -particle ancestor wavefunction.

Γ → D.

If there are, then N -representable, and no, then non
N -representable. The variational determination of 2-
RDM can be formulated using EN , a complete set of N -
presentable RDMs like folows.
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Since practical complete N -representability condition on
2-RDM is not accessible, we need practical condition on
1- and 2-RDMs. For 1-RDM, practical complete condition
is known: if eigenvalue of 1-RDM (occupation number by
natural orbital) are lie in [0, 1], then it is N -representable,
but for 2-RDM, such condition is not known, and we only
know that some necessary conditions like P , Q, G, T1 and
T2′ conditions. Explicit form of these conditions can be
found in literature [5]. These necessary conditions states
that P -matrix, Q-matrix, G-matrix, etc. are all positive
semidefinite; eigenvalues of these matrices are larger than
or equal to zero. Moreover, complete N -representability
condition of 1-RDM can be restated as: given 1-RDM is
N -representable if and only if γ and I − γ are positive
semidifinite, where I is an identity matrix.

Finally, the ground state problme using the 2-RDM as
a basic variable can be formulated as:
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where ẼN is approximately N -representable 2-RDM which
satisfies necessary condition:

ẼN = {Γ|Γ satisfies P , Q, G, T1 and T2′ conditions}.

We refer such varational method as the “the RDM
method”.

2.4 Positive semidefinite programming

The definition of the standard type semidefinite pro-
gramming is given by folloiwng:

(P ) min : Σm
k=1ckxk

s.t. : X = Σm
k=1F kxk − F 0,X � O,

where the symbol Sn is the space of n× n symmetric ma-
trices. The Lagrangian dual (D) of the problem (P ) can
be derived as:

(D) max : F 0 • Y

s.t. : F k • Y = ck (k = 1, . . . ,m)

Y � O.

We can formulate the RDM method as the standard type
semidefinite programming of huge size [3, 5]. We can use
one of the implementations as a black box solver.

Table 1. Ground state energies (in differences from that of
full CI) calculated by the RDM method imposing the P ,
Q, G, T1, T2′ conditions from SDPARA 7.3.2, and those
obtained by CCSD(T), and Hartree-Fock. The last column
shows the full CI energies. The correlation energies (0%
for Hartree-Fock and 100% for full CI) in percentage are
also shown in the second row.

system state basis N ∆E
PQGT1T2′ ∆ECCSD(T) ∆EHF EFCI

NH−
2

1A1 28 10 (5) +0.000 63 +0.008 74 +0.141 98 −55.624 71
100.4 99.55 100 0

CH2
1A1 28 8 (4) +0.000 59 +0.005 80 +0.100 67 −38.962 24

100.4 99.42 100 0
NH3

1A1 30 10 (5) +0.000 49 +0.007 46 +0.128 75 −56.304 89
100.4 99.62 100 0

CH3
2A

′′
2 30 9 (5) +0.000 31 +0.004 01 +0.094 54 −39.644 14

100.3 99.67 100 0
C2

1Σ+
g 36 12 (6) 1 +0.000 39 +0.055 98 +0.285 66 −75.642 11

101.2 99.86 100 0

3 Results and Conclusion

We showed the outline of the RDM method with appli-
cations to molecular systems. Some feature of this method
are: (i) it is an ab initio method, which is rigorously the
same as the Schrödinger equation for the ground state; (ii)
the number of variables is always four, regardless of the
size of the system. The major obstacle for this method
is the fundamentally difficulty of obtaining the complete
N -representability conditions for the 2-RDM; therefore we
used approximate ones: P , Q, G, T1 and T2′. The consid-
ered problem becomes a semidefinite programming prob-
lem and we presented results for NH−

2 , CH2, NH3, C2,
CH3, in Table 1 using a supercomputer with a highly effi-
cient semidefinite programming solver, SDPARA. We ob-
tained fairly good energies comprable to CCSD(T).
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