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1 Introduction

The Boundary-Node Method (BNM) [1] has been so far

proposed for solving the boundary-value problem of a par-

tial differential equation and has yielded excellent results

in the field of engineering [1, 2]. It is a primary merit

of the BNM that elements of a geometrical structure are

no longer necessary. However, the BNM has the following

difficulty: a boundary must be divided into a set of in-

tegration cells to calculate contour integrals. If the BNM

were extended to the method without integration cells, the

demerit of the BNM can be resolved completely.

For the purpose of resolving the above demerit, Saitoh

et al. proposed the eXtended BNM (X-BNM) and inves-

tigated its performance numerically [3]. As a result, they

showed that the accuracy of the X-BNM is much higher

than that of the standard BNM for the Poisson problem.

However, when the boundary shape is strongly concave,

the accuracy of the X-BNM is drastically degraded.

The purpose of the present study is to modify the X-

BNM for suppressing the accuracy degradation and to

compare the performance of the modified X-BNM with

that of the conventional one.

2 Extended Boundary-Node Method

Throughout the present study, we adopt a two-

dimensional (2-D) Laplace problem:

−∆u = 0, in Ω (1)

u = ū, on ΓD (2)

q ≡ ∂u/∂n = q̄, on ΓN (3)

where Ω denotes a domain bounded by a simple closed

curve ∂Ω. Here, ∂Ω consists of two parts, ΓD and ΓN,

which satisfy the following relations: ΓD ∪ ΓN = ∂Ω and

ΓD∩ΓN = φ. In addition, ū and q̄ denote known functions

on ΓD and on ΓN, respectively, and n indicates an outward

unit normal on ∂Ω.

As is well known, (1) can be easily transformed to the

following boundary integral equation:

I

∂Ω

∂w∗(x(s), y)

∂n
[u(x(s)) − u(y)] ds

−
I

∂Ω

w∗(x(s), y) q(x(s)) ds = 0, (4)

where w∗(x, y) ≡ − log |x − y|/2π. Moreover, s indicates

an arclength along ∂Ω.

In order to discretize (4) and its associated boundary

conditions, N boundary nodes, z1, z2, · · · , zN , are placed

on ∂Ω. Furthermore, shape functions, Φ1,Φ2, · · · ,ΦN , are

defined by means of the Moving Least-Squares (MLS) ap-

proximation [3]. In addition, u and q are assumed as

u (x(s)) =
N

X

j=1

Φj(s) u∗
j , q (x(s)) =

N
X

j=1

Φj(s) q∗j . (5)

where u∗
j and q∗j (j = 1, 2, · · · , N) are all constants.

Under the above assumptions, (4) and its associated

boundary conditions can be discretized to a linear system.

In this way, the 2-D Laplace problem is reduced to the

problem in which the linear system is solved.

In the X-BNM, contour integrals of (4) are directly cal-

culated by use of the vector equation of ∂Ω. To this end,

the vector equation is determined as follows. First, the

implicit-function representation f(x) = 0 is determined for

the curve passing through all boundary nodes. Next, we

numerically solve the following ordinary differential equa-

tion:
dx

ds
= R

„

π

2

«

· ∇f

|∇f | , (6)

where R(θ) denotes a tensor representing a rotation

through an angle θ. Finally, the resulting P data points,

x(1), x(2), · · · , x(P ), are interpolated with the cubic spline

to get the vector equation x = g(s). In the next section,

we explain the numerical solution of (6) in detail.

3 New Approch for Determing Data Points

By solving (6), we can determine P data points. How-

ever, even if the higher-order Runge-Kutta method is ap-

plied to (6), the numerical solution does not always satisfy

f(x) = 0. So as to resolve this problem, Saitoh et al.

proposed the algorithm in which x(n+1) is calculated from

x(n) by use of the following three steps (see Fig. 1(a)):

(i) An approximate solution of x∗ at the (n + 1)th step

is modified by

x∗ = x(n) + R

„

π

2

«

·
»

∇f

|∇f |

–

x(n)
δs (7)

Here, δs is a constant.

(ii) In order to calculate an intersection of the straight

line x = x∗ + λ(∇f)x∗ and the curve f(x) = 0, the

nonlinear equation G
`

λ
´

≡ f
`

x∗ + λ(∇f)x∗
´

= 0 is

solved by using the Newton method.



(a) (b)

Fig. 1. Schematic view of the approach for determining
data points for the case where a boundary node (a) is not
contained and (b) is contained in the δs-neighborhood of
x(n). Here, the symbol, ◦, denotes boundary nodes.

(iii) The numerical solution x(n+1) is determined by

x(n+1) = x∗ + λ
`

∇f
´

x∗ .

By using the above approach, although the curve x =

g(s) passes through all data points, boundary nodes do not

always locate on the curve. This is because any boundary

nodes may not be contained in data points to be interpo-

lated. In order to overcome the above problem, we use

the following approach for determining data points: if a

boundary node exists in the δs-neighborhood of x(n), it is

employed as x(n+1) instead of solving (6) numerically (see

Fig. 1(b)). Throughout the present study, the X-BNM

with the above correction is called the modified X-BNM.

4 Numerical Results

In this section, we compare the performance of the mod-

ified X-BNM with the conventional one. As an example

problem, we adopt the 2-D Laplace problem over Ω ≡
n

(x, y)
˛

˛

˛

ˆ

x − ∆(y/2)2
˜2

+ (y/2)2 < 1
o

with the Dirichlet

condition: u = cosh πx sin πy + sinh πx cos πy on ∂Ω.

Let us first investigate both the accuracy of the modi-

fied X-BNM and that of the conventional one. The relative

errors are calculated as a function of N and are plotted in

Fig. 2. The relative error of the modified X-BNM is dimin-

ished in almost proportion to N−1.35. On the other hand,

the relative error of the conventional X-BNM decreases

with an increase in N for the case with N . 50, whereas it

drastically increases with N for N & 50. In addition, the

accuracy of the modified X-BNM is almost equal to that

of the conventional one for the case with N . 50.

Next, we investigate the influence of the boundary shape

on the accuracy of the numerical solution. To this end, the

relative errors are calculated as functions of the triangu-

larity ∆ and are plotted in Fig. 3(a). This figure indicates

that the accuracy of the modified X-BNM is much higher

than that of the conventional one for the case with ∆ & 1.

Finally, we compare the speed of the modified X-BNM

with that of the conventional one. The ratio τM/τC of

the CPU time is calculated as a function of ∆ and is de-

picted in Fig. 3(b). Here, τM and τC are the CPU time

required for the modified X-BNM and that for the conven-

tional one, respectively. We see from this figure that the

speed of the modified X-BNM is almost equal to that of

the conventional one.

From these results, we can conclude that the perfor-

mance of the modified X-BNM is superior to that of the

conventional one.

Fig. 2. Dependence of the relative error ε on the number
N of boundary nodes (∆ = 3).

(a)

(b)

Fig. 3. Dependence of (a) the relative error ε and (b) the
ratio τM/τC of CPU times on the triangularity ∆ (N =
256).

5 Conclusion

We have modified the X-BNM so that the accuracy

degradation may not be caused by a boundary shape and,

have numerically investigated the performance of the mod-

ified X-BNM by comparing with the conventional X-BNM.

Conclusions obtained in this paper are summarized as fol-

lows.

1. the accuracy of the modified X-BNM is much higher

than that of the conventional one, when the boundary

shape is strongly concave.

2. the speed of the modified X-BNM is almost equal to

that of the conventional one.
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