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1 Introduction

Miniaturization of metal-oxide field-effect-transistors
(MOSFETSs) has been aggressively accelerated and they
have become as small as a few tens nm regime. It has
been very difficult to fabricate such ultra small devices
in small turn-around time within reasonable fabrication
cost. Therefore, it is essential to develop a device simula-
tor which predicts the device performances with possible
quantum mechanical effects for the new era of nano-scale
devices, which allows us to develop the LSI technology
with conventional pace.

A non-equilibrium Green’s function (NEGF) is one of
the attracting methods for such quantum device simula-
tions, since it can take into account both quantum mechan-
ical effects and open boundary conditions. It is solved with
Poisson’s equation self-consistently. A real-space method
(RSM) for solving the NEGF is considered to be suitable
for accurate simulations. However, the RSM requires quite
expensive computational costs and is difficult to apply for
large-scale calculation physical model. On the other hand,
in a mode space method (MSM), the transverse spatial
coordinate system is replaced by the corresponding eigen-
mode energies and only 2D Schrodinger equation has to be
solved in each cross-section of the device along the channel
direction. The MSM for solving the NEGF transport equa-
tions can greatly save the computational resources. Al-
though the MSM could reduce the computational time, in
the actual numerical simulations, conventional discretized
schemes, i.e., a finite difference method (FDM) or a finite
element method (FEM) are still inappropriate for large-
scale calculation without loss of accuracy.

In this paper, we have adopted a perturbative treat-
ment, namely, a fast uncoupled mode space approach
(FUMS)[1] into our previous Bridge-Function Pseudospec-
tral Method (BPSM) [2] to reduce further the computa-
tional time. This method (FUMS-BPSM) enables us to
calculate much faster than our previous method, retain-
ing high accuracy. We have affirmed that we can calculate
more accurately and faster than FDM or FEM by using
BPSM, CPU time for calculation by the BPSM is 60 times
faster than that of FDM.

2 Theory

2.1 Bridge-Function-PseudoSpectral-Method
(BPSM)

The BPSM is composed of the bridge-functions, con-
nections of two Lagrange polynomials (Fig.1) and the
Gauss-Lobatto quandrature [3]. The continuity of elec-

trical flux density and probability current density, which
appear in Poisson’s equation and NEGF, respectively, are
naturally guaranteed by the bridge-function (solid line) at
any boundaries. The fact enables us to take the bound-
ary conditions into account in much easier manner than
the conventional PSMs. In addition, the FUMS is easily
implemented in the BPSM formalism.

2.2 Fast-Uncoupled-Mode-Space-approach
(FUMS)

An uncoupled mode space approach (UMS) [1] requires
to solve the 2D Schrédinger equation-1D NEGF calcula-
tion repeatedly on each cross-section of the device under
consideration. Because of that, it is found that the com-
putational costs and time rapidly increase as the number
of longitudinal mesh points increase. On the other hand,
in the FUMS approach, the subband profile is approxi-
mated up to the first order by considering the change from
the average of potential profile as the perturbation. Here,
we have only to solve the non-perturbative Schrodinger
equation once in the coupled 2D Schrédinger equation-1D
NEGF calculation, even when the number of longitudinal
mesh points increase.

3 Results and discussions

In order to show the superiority of the present method
(FUMS-BPSM) over our previous BPSM (UMS-BPSM:
BPSM without perturbational treatment), we have applied
the FUMS-BPSM to the analysis of I-V characteristics of
a gate-all-around Si nano-wire MOSFET (SiNW FET) as
shown in Fig. 2 [4]. In the analysis, Schrodinger-Poisson
equations and NEGF are solved simultaneously and self-
consistently. The orientation dependent effective masses
in the conduction band of Si are also taken into account.

Figure 3 and 4 show the local density of states and
the first five subband profiles along the channel calculated
by the UMS-BPSM (Fig.3) and FUMS-BPSM (Fig.4), re-
spectively. In both figures, quantum interferences and
tunneling effects can be observed. It should be notewor-
thy that the results of the FUMS-BPSM coincide quite
well with those of the UMS-BPSM, in spite of the fact
that Schrédinger equation is solved only once in the latter
method.

In Fig. 5, the comparison of the computational time is
shown to obtain the subband profiles with increasing lon-
gitudinal nodal number N,. The result of the UMS-BPSM
(blue line) increases linearly as N, increases, whereas the
FUMS-BPSM (green line) keeps constant, practically. The



present FUMS-BPSM remarkably shows that it is 20 times
faster than the previous UMS-BPSM on the same compu-
tational platform. This is mainly because, as mentioned
above, Schrodinger equation needs to be solved only one
time in the present method even when N, increases.

4 Conclusion

We have developed a fast-uncoupled mode-space bridge-
function pseudo-spectral method (FUMS-BPSM) for
nano-scaled device simulation where quantum effects are
fully taken into account.

As a result, it is found that the FUMS-BPSM reduces
the simulation time while keeping computational accuracy.
Therefore, the present FUMS-BPSM can be an efficient
simulation method for the nano-scale devices.
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Fig. 1. 1D basis functions xi,m(z) ( = 3 and m = 3),
where 7 indicates the region, and m the basis. The solid
lines are the bridge functions, which ensure the continuity
of any physical quantities between the adjacent regions.
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Fig. 2. Model structure of a SINW MOSFET[4] under
investigation. The channel orientation is along (100).
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Fig. 3. The computed local density of states and electron
subbands (solid lines) of SINW FET (source region is lo-
cated from z = 0 to 5 nm, channel is £ = 5 to 15 nm,
drain is z = 15 to 20 nm) by FUMS-BPSM(V, = 0.1 and
Va=0.1 V).
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Fig. 4. The computed local density of states and electron
subbands (solid lines) of SINW FET (source region is lo-
cated from z = 0 to 5 nm, channel is £ = 5 to 15 nm,
drain is © = 15 to 20 nm) by FUMS-BPSM(V, = 0.1 and

Va=0.1V).
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Fig. 5. The computational time for solving Schrédinger
equation at V; = 0.1 V V3 = 0.1 V, increasing the longi-
tudinal nodal number N,.



