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1 Introduction

Space plasma is a collisionless, multi-scale, and highly
nonlinear medium. There are numerous types of self-
consistent computer simulations that treat space plasma
according to various approximations. The global-scale
dynamics are commonly described by magneto-hydro-
dynamic (MHD), Hall-MHD and multi-fluid models, while
electron-scale processes are described by the kinetic model,
i.e., the Maxwell equations and either the Newton-Lorentz
equation for charged particles or the Vlasov (collisionless
Boltzmann) equation. Hybrid methods treat ions as par-
ticles and electrons as a fluid for ion-scale processes.

Conventionally, MHD simulations have been used for
numerical modeling of global-scale problems such as mag-
netospheres of stars and planets. However, the MHD simu-
lations need diffusion coefficients, which are essentially due
to kinetic processes that are eliminated in the framework
of the MHD approximation. Recent high-resolution in-situ
observations have also suggested that fluid scale and ki-
netic scale in space plasma are strongly coupled with each
other, which is called cross-scale coupling. To understand
the cross-scale coupling in space plasma, it is important
to include full kinetics in global-scale simulations, which is
the goal of this study.

2 Overview of Numerical Schemes

The Vlasov model solves the kinetics equations of space
plasma, i.e., the Maxwell equations (1) and the Vlasov
(collisionless Boltzmann) equation (2),

∇×B = μ0J +
1

c2

∂E

∂t

∇×E = −∂B

∂t

⎫
⎬
⎭ (1)

∂fs

∂t
+ v

∂fs

∂r
+

qs

ms
[E + v ×B]

∂fs

∂v
= 0 (2)

where E, B, J, ρ, μ0, ε0 and c represent electric field,
magnetic field, current density, charge density, magnetic
permeability, dielectric constant and light speed, respec-
tively. The Vlasov equation (2) describes the develop-
ment of the distribution functions by the electromagnetic
(Lorentz) force, with the collision term in the right hand
side set to be zero. The distribution function fs(r, v, t)
is defined in position-velocity phase space with the sub-
script s being the species of singly-charged particles (e.g.,
s = i, e for ions and electrons, respectively). The Maxwell
equations and the Newton-Lorentz equations or the Vlasov
equation are coupled with each other via the current den-
sity J that satisfies the continuity equation for charge
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These equations are regarded as the “first principle” of the
collisionless plasma.

The Vlasov equation (2) consists of two advection equa-
tions with a constant advection velocity and a rotation
equation by a centripetal force without diffusion terms.
To simplify the numerical time-integration of the Vlasov
equation, we adopt a modified version of the operator split-
ting [1],
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Equations (4) and (5) are scalar (linear) advection equa-
tions in which v and E are independent of r and v, respec-
tively. We adopt a multidimensional conservative semi-
Lagrangian scheme [1] for solving the multidimensional
advection equations. In the full electromagnetic method,
it is essential to use conservative schemes for satisfying
the continuity equation for charge. With the multidimen-
sional conservative semi-Lagrangian scheme, the continu-
ity equation for charge (3) is exactly satiesfied. In the
present study, we compute the numerical flux by using
the multi-dimensional advection scheme [1] with a posi-
tive, non-oscillatory and conservative limiter [2, 3] for sta-
ble time-integration of advection equations. Equation (6),
on the other hand, is a multi-dimensional rotation equa-
tion which follows a circular motion of a profile at constant
speed by a centripetal force. For stable rotation of the pro-
file on the Cartesian grid system, the “back-substitution”
technique [4] is applied. In addition, Maxwell’s equations
are solved by the implicit Finite Difference Time Domain
(FDTD) method.

The velocity distribution function has both
configuration-space and velocity-space dimensions,
and defined as a hyper-dimensional (>3D) array, There
are some additional communications overhead in par-
allelizing over the velocity-space dimensions since a
reduction operation is required to compute the charge and
current densities (the zeroth and first moments) at a given
point in configuration space. Thus we adopt the “domain
decomposition” only in configuration space, where the
distribution functions and electromagnetic fields are de-
composed over the configuration-space dimensions. This
involves the exchange of ghost values for the distribution
function and electromagnetic field data along boundaries
of each procession element. The non-oscillatory and
conservative scheme [2, 3] uses six grids for numerical
interpolation, and three ghost grids are exchanged by
using the “Mpi_Sendrecv()” subroutine in the standard
message passing interface (MPI) library for simplicity
and portability [5]. Note that the code allows thread
parallelization over the velocity-space dimensions via
OpenMP.



Fig. 1. Performance of different supercomputer systems with scalar processors. (left) Computational speed and (right)
Scalability as a function of the number of cores. The star, asterisk, square, circe, and downward-pointing-triangle marks
represent the results on the HA8000, FX1, HX600, RX200S6, and R815. respectively.

3 Performance Evaluation

We conduct the performance measurement test of
our parallel Vlasov code with a phase-space grid of
(Nvx , Nvy , Nvz , Nx, Ny) = (30, 30, 30, 40, 20) on one core,
which corresponds to a weak-scaling test with 1GB/core.
The tests were completed on various scalar-type paral-
lel supercomputers, Hitachi HA8000 at the University of
Tokyo, Fujitsu FX1 at Nagoya University and JAXA, Fu-
jitsu HX600 at Nagoya University, Fujitsu RX200S6 at
Kyushu University, and DELL PowerEdge R815 at Solar-
Terrestrial Environment Laboratory, Nagoya University.
Figure 1 shows the computational performance on these
systems. As seen, we obtained a high scalability of over
80% with 1,000 cores. However, the scalability becomes
worse when the all computational resources (3,072 and
12,032 cores on FX1, and 2,304 cores on R815) are used.
It should be noted that the internode-connection device
of the HA8000 system is Myrinet-10G, and the scalability
becomes worse with more than 1,024 cores because of the
network bandwidth capacity.

4 Conclusion

For studying multi-scale processes in space plasma, com-
puter simulations with the first-principle (kinetic) model
are essential. We develop numerical schemes for Vlasov
simulations for practical use on currently-existing super-
computer systems. The weak-scaling benchmark test
shows that our parallel Vlasov code achievs a high scal-
ability. Currently, we use 256-1024 cores for parallel
computations and apply the present parallel Vlasov code
to “global” simulation on the interaction between so-
lar/stellar winds and a weakly-magnetized small body
(Fig.2).
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Fig. 2. Structures of bow shock and wake tail formed as
a result of the interaction between a weakly-magnetized
object and the solar wind. Spatial profile of ion density
together with the configuration of magnetic field lines ob-
tained by a global Vlasov simulation.

References

[1] T. Umeda, K. Togano, and T. Ogino, Two-dimensional
full-electromagnetic Vlasov code with conservative scheme
and its application to magnetic reconnection, Comput.
Phys. Commun., 180, 365–374, 2009.

[2] T. Umeda, A conservative and non-oscillatory scheme for
Vlasov code simulations, Earth Planets Space, 60, 773–
779, 2008.

[3] T. Umeda, Y. Nariyuki, and D. Kariya, A non-oscillatory
and conservative semi-Lagrangian scheme with fourth-
degree polynomial interpolation for solving the Vlasov
equation, Computer Physics Communications, 183, 1094–
1100, 2012.

[4] H. Schmitz and R. Grauer, Comparison of time split-
ting and backsubstitution methods for integratingVlasov’s
equation with magnetic fields, Comput. Phys. Commun.,
175 86–92, 2006.

[5] T. Umeda, K. Fukazawa, Y. Nariyuki, and T. Ogino, A
scalable full electromagnetic Vlasov solver for cross-scale
coupling in space plasma, IEEE Trans. Plasma Sci., in
press.


