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1 Introduction

Numerical simulation of an unsteady model is an ini-
tial/boundary value problem: given an initial condition
of the model, and boundary conditions, the model simu-
lates the evolution of the model variables. Obviously, the
more accurate the estimate of the initial conditions, the
better the quality of the forecasts. Estimation is the pro-
cess through which all the available information is used in
order to estimate as accurately as possible the state of all
the model variables (an initial condition). The available
information consists of the observation proper, and of the
physical laws that govern the evolution of the model vari-
ables. The latter are available in practice under the form
of a numerical model [1].

In this paper, the Estimation is formulated as a nonlin-
ear optimization problem with tens of thousands of vari-
ables. Problems of this size can be solved efficiently only
if the storage and computational costs of the optimiza-
tion algorithm can be kept at a tolerable level. Hence, a
large-scale optimization method is employed to minimize
the objective function. At each iteration, it requires the
gradient of the objective function. A method is developed
for computing the gradient efficiently. Finally, numerical
experiment is presented.

2 Formulation

Consider the nonlinear Burgers equation:
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Once it has been disctretized in space using finite differ-
ences to n independent variables, the model can be written
as a set of n nonlinear coupled ordinary differential equa-
tions:
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This is the model in differential form. Once a time-
difference scheme is chosen, it becomes a set of nonlinear-
coupled difference equations; this is the forward model.

A numerical solution of the model (2) starting from an
initial time t0 can be readily obtained by integrating the
model numerically using the forward model between t0 and
a final time t. Let x(t0) denote the initial condition from
which the model is numerically integrated. The initial con-
dition defines a unique solution x(t) to the model.

The distance function is taken as

J =
n1X

n2

H[x(ti)] dt (4)

where H[x(ti)] is a scalar measuring the distance between
x(ti) and its observations available at time ti = i∆t.
The available observations are assumed to be distributed
over a limited time interval [t2, t1] (t2 = n2∆t, t1 =
n1∆t, t0 < t2 < t1). The constraint is the model equa-
tion. For a given initial condition and for the correspond-
ing solution x(ti) of the forward model, the distance func-
tion is evaluated Thus, the distance function is regarded
as a function of x(t0).

Hence, estimation of x(t0) is formulated as an optimiza-
tion problem:

min J(x(t0))

An optimization method is used to find the value x(t0)
which minimizes J , starting from an initial guess of x(t0).

3 Numerical Optimization

This optimization problem has thousands or millions
of variables. Hence, L-BFGS-B [2] are used to solve this
large-scale problem. Since the method does not require
second derivatives of the objective function, it can be ap-
plied when the Hessian is not practical to compute. It uses
the limited memory BFGS approximation to the Hessian,
and so creates a quadratic model function using gradient
information in such a way that the storage required in lin-
ear in the number of the variables.

4 Forward Model

The forward model integrates the Buugers equation
using the finite difference scheme; the central difference
scheme is used for the diffusion term whereas the second
order upwind difference scheme is used for the advection
term:
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where xi = i∆x.

5 Gradient Computation

Each iteration of numerical optimization requires the
gradient of the objective function. If a finite-difference
derivative approximation is used to calculate the gradi-
ent, then it requires executing as many integrations of the



model equation as the number of the variables. Hence,
huge CPU time is consumed.

We derive the tangent linear model that propagates the
perturbation from t0 to t from the forward model, and
then the corresponding adjoint model [3]. The gradient is
computed from the adjoint model.

6 Numerical Experiment

The Burgers equation is numerically integrated between
the t0 = 0 and t1 = 1000∆t. Figure 1 - Figure 6 show the
evolution of the model variable field.
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Fig. 1. Time = 0
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Fig. 2. Time = 200 ∆t
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Fig. 3. Time = 400 ∆t
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Fig. 4. Time = 600 ∆t
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Fig. 5. Time = 800 ∆t
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Fig. 6. Time = 1000 ∆t

This solution is assumed to be observations. Using the
observations between t2 = 201∆t and t1 = 1000∆t, we es-
timate the state of the field at t0 = 0 used for the numerical
integration. L-BFGS-B solves the large-scale nonlinear op-
timization problem starting an initial guess for the state.
Figure 7 shows the initial guess.

Figure 8 shows the convergence history. The objective
function decreases by a factor of about 106 after 500 iter-
ations.

Figures 9 compares the estimated state and its truth.

7 Conclusions

The estimated state agrees reasonably with the initial
condition used in the numerical integration.
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Fig. 7. Initial guess

Fig. 8. Convergence history of the optimization
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Fig. 9. Estimated state and its truth
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